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Abstract: This study developed a new estimator for estimating population mean in the 

presence of measurement errors using auxiliary information. Data collection requires careful 

consideration and security precautions because it is a basic component of all statistical 

studies. Naturally, at the analysis step, it is assumed that all data recorded were precisely 

measured. There are a few circumstances, however, in which this assumption of error-free 

observations might not hold true. It might be possible to acquire the data with few errors. In 

light of this, a method for estimating the mean of a finite population in the presence of 

measurement errors is proposed using auxiliary information and approximate first-order 

equations for bias and mean squared error are also produced. It has been shown through 

theoretical and numerical studies that the proposed new estimator improves the one already 

found in the literature. 

Keywords: Bias, Mean Squared Error, Efficiency and Measurement errors, Auxiliary 

Variable. 

  

1. Introduction 

When conducting a survey, the features of estimators based on data typically assume that the 

observations were gathered without measurement errors on the characteristic being 

researched. In reality this assumption is not always true and measurement errors like 

reporting and computing errors can have an impact on statistics. As a result, it is impossible 

to consistently estimate population parameters due to measurement inaccuracies. The 

parameter estimates are inaccurate and inconsistent as a result of measurement problems. The 

statistical inferences based on observable data continue to be valid if measurement error are 

very small and may be disregarded. On the other hand, if they are not insignificantly small 

and minor, the inferences may just be false and wrong but frequently result is not deliberate. 

Misra et al.(2016 a, 2016 b) , Misra et al. (2017) and Singh et al (2019) investigated a few 

population mean estimators under measurement errors and discussed some significant causes 

of measurement errors in survey data.  

 

Let 𝑈 = 𝑈1, 𝑈2, . . . , 𝑈𝑁 be N unit of finite population. Consider that a simple random 

sampling technique was used to obtain a set of n paired observations on the two variables X 

and Y. However,  Let (xi, yi) be the observed values rather than the true values for a simple 

random size n(𝑋𝑖, 𝑌𝑖) for the xi, (𝑖 = 1,2, … 𝑛)represents the sampling unit in the sample as 
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ui= 𝑦𝑖 − 𝑌𝑖 and 𝑣𝑖 = 𝑥𝑖 − 𝑋𝑖 , where 𝑢𝑖 and 𝑣𝑖are associated measurement errors that are 

stochastic in nature with mean zero and variances  𝜎𝑢
2 𝑎𝑛𝑑 𝜎𝑣 

2 respectively. Further, let 

𝑢𝑖
′  𝑎𝑛𝑑 𝑣𝑖

′𝑠  are uncorrelated while 𝑋𝑖
′𝑠 𝑎𝑛𝑑 𝑌𝑖

′𝑠 are correlated. Let the population mean, of 

𝑋 𝑎𝑛𝑑 𝑌characteristics be 𝜇𝑋 𝑎𝑛𝑑  𝜇𝑦 population variances of (X, Y) are 2

X  and 2

Y

respectively and the populations relationship between X and Y is known as correlation.  
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are not unbiased estimators of the 

population variances 𝜎𝑋
2 𝑎𝑛𝑑 𝜎𝑌

2. When measurement errors are present, the expected value is 

given by 

𝐸(𝑠𝑦
2) = 𝜎𝑌

2 + 𝜎𝑢
2. 

Given error variances 𝜎𝑢
2𝑎𝑛𝑑 𝜎𝑣

2. 

𝜎̂𝑌
2 = 𝑠𝑦

2 − 𝜎𝑢
2 > 0 

𝜎̂𝑋
2 = 𝑠𝑥

2 − 𝜎𝑣
2 > 0 

Further let, 

𝐶𝑌 =
𝜎𝑌
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𝛾2𝑌 = 𝛽2𝑌 − 3, 𝛾2𝑋 = 𝛽2𝑋 − 3, 𝛾2𝑢 = 𝛽2𝑢 − 3 

𝛾2𝑣 = 𝛽2𝑣 − 3, 𝛽2𝑌 =
𝜇4(𝑌)

𝜇2
2(𝑌)
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, 𝛾1(𝑋)
= √𝛽1(𝑋),  𝛽1(𝑋)

3
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2

3


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=  

𝜇𝑞𝑟𝑠𝑡 = 𝐸[(𝑋 − 𝜇𝑋)𝑞(𝑌 − 𝜇𝑌)𝑟𝑣𝑠𝑢𝑡] 

𝜇2000 = 𝜎𝑋
2 

𝜇0200 = 𝜎𝑌
2 

𝜇0020 = 𝜎𝑣
2 

𝜇0002 = 𝜎𝑢
2  

To estimate the population mean, an estimator in presence of measurement errors is proposed 

as 
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2. Bias and Mean Squared Error: 

We study the approximate values as 

𝑦̄ = 𝜇𝑌(1 + 𝑒0) 

𝑥̄ = 𝜇𝑋(1 + 𝑒1) 

𝜎̂𝑌
2 = 𝜎𝑌

2(1 + 𝑒2) 

𝜎̂𝑋
2 = 𝜎𝑋

2(1 + 𝑒3) 

𝜎̂𝑋𝑌 = 𝜎𝑋𝑌(1 + 𝑒4) 

so that 𝐸(𝑒0) = 𝐸(𝑒1) = 𝐸(𝑒2) = 𝐸(𝑒3) = 𝐸(𝑒4) = 0 

From Singh and Karpe (2009), we have 
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Now Expressing (1.1) in terms of ei’s, We have 
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On solving and approximating it to the first order, we have  
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Taking expectation on both the sides of (2.1), the bias  is given by,                                                                                             
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Considering the expectations on both sides of (2.3) and then the mse is given by, 

( )
















−++=−=









XXX

XX
XY

Y

Y
YYMEME

nn

C

n

A
k

n

C
yEyMSE











2

3000

2
2

1

42
2

22

44ˆˆ

 

                                                 










−++

YYY

YY
Y

nn

C

n

A
k








2

0300

2
2

2

4 44

 

                                               










−+










−+

Y

Y

YY

Y
YX

YX

X
n

C

n
k

n

CC

n
k











2

2

0300
.2

2

2

2100
1

2 2222  

                                              
















+−−

−
+

n

CC

nnn
kk YX

XYYX

YX 







 422

1
2

2

1200

2

2100
21

22  

( )  122102210122

2

211

2

1

2
2

2 222ˆ 


 kkkkkk
n

C
yMSE Y

Y

Y
YME +++++=                                    

(2.4) 

where  









−+=

XXX

XX
X

nn

C

n

A








2

3000

2
4

11 44  











−+=

YYY

YY
Y

nn

C

n

A








2

0300

2
4

22 44  























−=

n

CC

n

YX

YX

X 



 2

2

21002

10  



 
 

 
 

2390 
  
 

The Ciência & Engenharia - Science & Engineering Journal 
ISSN: 0103-944X 
Volume 11 Issue 1, 2023 
pp: 2385-2392 
 

https://seer-ufu-br.online 























−=

Y

Y

YY

Y
n

C

n 




2

2

03002

02 2  























+−−

−
=

n

CC

nnn

YX

XYYX

Yx 







 422

1
2

1200

2

210022

12  

For optimizing (2.4) w.r.t k1& k2, we have the two normal equations as  

010212111 =++  kk              (2.5) 

002222112 =++  kk  .            (2.6) 

On solving these two normal equations for k1 & k2, the optimum values of k1& k2are given by  
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For these optimum values of k1 and k2 the minimum mean squared error of 𝑦̂̄𝑀𝐸is given by   
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3.Theoretical Comparison

 

We compare the proposed estimator's MSE with the usual mean per unit estimator that is.
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Expressing (1.1) in terms of ei’s, my becomes 
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Now, the proposed estimator 𝑦̂̄𝑀𝐸 will be more efficient than the usual mean per unit 

estimator in presence of measurement error if 

( ) ( ) 0ˆ − MEm yMSEyMSE
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Hence the proposed estimator 𝑦̂̄𝑀𝐸 will be more efficient than the usual mean per unit 

estimator in presence of measurement error if the condition (3.4) is satisfied by the data set. 

 

4. Empirical Study 

Gujrati and Sangeeta's (2007) page 539 has taken data statistics used in the empirical study 

where 

Y= Accurate Consumption Expenses 

X= True Earnings 

yi= Measured consumption expenses 

xi   = Calculate income 

𝑛 = 10, 

𝑋̄ = 170, 

𝑌̄ = 127, 

𝜎𝑋
2 = 3300, 

𝜎𝑌
2 = 1278, 

𝜎𝑢
2 = 32.4001, 

𝜎𝑣
2 = 32.3998 

𝐶𝑌 = 0.2815, 

𝐶𝑋 = 0.3379, 

𝜌𝑋𝑌 = 0.9641, 

𝛽2𝑌 = 1.9026, 

𝛽2𝑋 = 1.7758, 

𝛽2𝑢 = 1.7186, 

𝛽2𝑣 = 1.8409 
The computed MSEs of the estimators with measurement errors are provided by 

𝑀𝑆𝐸(𝑦̄𝑚) = 131.083 

𝑀𝑆𝐸(𝑦̄𝑚) = 14.969. 

 

5. Conclusion 

A proposed estimator's performance MEŷ  is judged by using the mean square error criterion to 

evaluate the effectiveness of the estimators has allowed for the theoretical and empirical 

establishment of the presence of measurement errors. By theoretical comparison it is 

discovered that the proposed estimate performs better in terms of MSE when compared to the 

mean per unit estimator. The relative efficiency (PRE) of the proposed estimator over the 

mean per unit estimator under measurement error is calculated using the above MSEs is 875 

showing the enhanced efficiency of the proposed estimator 
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