Union Of 4-Total Prime Cordial Graph G With The Bistar $B_{n,N}$

J. Maruthamani¹ And S. Pasunkili Pandian²

Abstract. Let G be a (p, q) graph. Let $f : V(G) \to \{1, 2, ..., k\}$ be a map where $k \in \mathbb{N}$ is a variable and k > 1. For each edge uv, assign the label gcd(f(u), f(v)). The map f is called a k-Total prime cordial labeling of G if $|t_{pf}(i) - t_{pf}(j)| \le 1$, $i, j \in \mathbb{N}$

 $\{1, 2, \dots, k\}$ where $t_{pf}(x)$ denotes the total number of vertices and

the edges labelled with x. A graph with a k-total prime cordial

labeling is called k-total prime cordial graph. In this paper we investigate the 4-total prime cordial labeling of $G \cup B_{n,n}$, where G has a 4-total prime cordial labeling and $B_{n,n}$ is a bistar.

1. Introduction

Graphs considered here are finite, simple and undirected. A weaker version of graceful and harmonious labeling called cordial labeling was introduced by cahit [2]. Several cordial related labelings have been studied in [1, 10, 4]. Ponraj et al. [6], have been introduced the notion of *k*-total prime cordial labeling and the *k*-total prime cordial labeling of some graphs have been investigated. In this paper, we investigate the 4-total prime cordial labeling of $G \cup B_{n,n}$, where G has a 4-total prime cordial labeling and $B_{n,n}$ is a bistar.

2. *k*-total prime cordial labeling

Definition 2.1. Let *G* be a (p, q) graph. Let $f : V(G) \to \{1, 2, ..., k\}$ be a function where $k \in \mathbb{N}$ is a variable and k > 1. For each edge uv, assign the label gcd(f(u), f(v)). The map *f* is called *k*-Total prime cordial labeling of *G* if $|t_{pf}(i) - t_{pf}(j)| \le 1, i, j \in \{1, 2, ..., k\}$ where $t_{pf}(x)$ denotes the total number of vertices and the edges labelled with

x. A graph with a k-total prime cordial labeling is called k-total prime cordial graph.

2000 Mathematics Subject Classification. 05C78.

Key words and phrases. Prime Cordial Graph, *k*-total prime cordial graph, Bis- tar, Union of Graphs. Definition 2.2. The *union* of two graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$.

Definition 2.3. A *bipartite graph* is a graph whose vertex set V(G) can be partitioned into two subsets V_1 and V_2 such that every edge of G joins a vertex of V_1 with a vertex of V_2 . If G contains every edge joining V_1 and V_2 , then G is a *complete bipartite graph*. If $|V_1| = m$

and $|V_2| = n$, then the complete bipartite graph is denoted by $K_{m,n}$.

Definition 2.4. $K_{1,n}$ is called a *star*.

Definition 2.5. The *bistar* $B_{m,n}$ is the graph obtained by making adjacent the two central vertices of $K_{1,m}$ and $K_{1,n}$.

3. Preliminaries

Theorem 3.1. [6] The bistar $B_{n,n}$ is 4-total prime cordial for all values of n.

Before proving the main theorem, we once again defined the 4-total prime cordial labeling g of the bistar $B_{n,n}$:

For n = 4k and $k \in \mathbb{N}$. The labeling pattern is given in Table 1

Vertices	Labels				
и	4				
v	3				
u_1, \ldots, u_{2k}	4				
u_{2k+1},\ldots,u_{4k}	2				
v_1,\ldots,v_{2k}	3				
V_{2k+1}, \ldots, V_{4k}	1				
Table 1:					

In the case of n = 4k + 1 and $k \in N$. The labeling pattern is given in Table 2

Vertices	Labels
и	4
v	3
u_1, \ldots, u_{2k}	4
u_{2k+1},\ldots,u_{4k}	2
u_{4k+1}	2
v_1,\ldots,v_{2k}	3
v_{2k+1},\ldots,v_{4k}	1
v_{4k+1}	4
Table 2:	

For n = 4k + 2 and $k \in \mathbb{N}$. The labeling patter n is given in Table 3

Vertices	Labels
и	4
v	3
u_1,\ldots,u_{2k}	4
u_{2k+1},\ldots,u_{4k}	2
u_{4k+1}	2
u_{4k+2}	1
v_1,\ldots,v_{2k}	3
$v_{2k+1}, \ldots, v_{4k-1}$	1
v_{4k}	3
<i>v</i> 4 <i>k</i> +1	2
v4k+2	4

n is given in Table 3

In the case of n = 4k + 3 and $k \in \mathbb{N}$. The labeling pattern is given in Table 4

Vertices	Labels
и	4
v	3
u_1, \ldots, u_{2k}	4
u_{2k+1},\ldots,u_{4k}	2
u_{4k+1}	2
<i>u</i> 4 <i>k</i> +2	1
<i>u</i> 4 <i>k</i> +3	4
v_1,\ldots,v_{2k}	3
$v_{2k+1}, \ldots, v_{4k-1}$	1
v_{4k}	3
<i>v</i> 4 <i>k</i> +1	2
<i>v</i> 4 <i>k</i> +2	4
<i>v</i> 4 <i>k</i> +3	2

п	и	v	u_1	u_2	<i>u</i> ₃	<i>v</i> ₁	v_2	<i>v</i> ₃
<i>B</i> _{1,1}	2	3	4			4		
<i>B</i> _{2,2}	4	3	4	2		3	1	
<i>B</i> 3,3	4	3	4	2	2	3	1	4
Table 5:								

Table 4: For $n \in \{1, 2, 3\}$. The labeling pattern is given in Table 5

Remark. 2-total prime cordial graph is 2-total product cordial graph.

4. Main Results

Theorem 4.1. Let G be a (p,q) 4- total prime cordial graph then,

 $G \cup B_{n,n}$ is 4- total prime cordial for all $n \ge 4$.

Proof. Let u, v be the central vertices of the bistar $B_{n,n}$ and u_i $(1 \le i \le n)$ be the pendent vertices adjacent to u and v_i $(1 \le i \le n)$ be the pendent vertices adjacent to v. Let f be the 4- total prime cordial labeling of G and g be the 4- total prime cordial labeling of bistar $B_{n,n}$

as in Theorem 3.1. We now define $\varphi: V(G) \cup V(B_{n,n}) \rightarrow \{1, 2, 3, 4\}$ by

$$\varphi(u) = \begin{cases} f(u), & \text{if } u \in V(G) \\ g(u), & \text{if } u \in B_{n,n} \end{cases}$$

To prove our result, we have to split the proof into 15 cases.

Case 1. $p + q \equiv 0 \pmod{4}$.

Suppose $t_{pf}(1) = t_{pf}(2) = t_{pf}(3) = t_{pf}(4) = r$.

Subcase 1(a). $n \equiv 0 \pmod{4}$.

Let n = 4k and $k \in \mathbb{N}$. As in case 1 of Theorem 3.1, fix the label to the vertices u, v, u_i $(1 \le i \le 4k)$ and v_i $(1 \le i \le 4k)$ together with the 4- total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(2) = t_{p\varphi}(3) = 4k + r + 1$ and $t_{p\varphi}(4) = 4k + r$.

Subcase 1(b). $n \equiv 1 \pmod{4}$.

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, fix the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ and v_i $(1 \le i \le 4k + 1)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(2) =$

 $t_{p\varphi}(4) = 4k + r + 2$ and $t_{p\varphi}(3) = 4k + r + 1$.

Subcase 1(c). $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 and $k \in \mathbb{N}$. As in case 3 of Theorem 3.1, fix the label to the vertices u, v, u_i $(1 \le i \le 4k + 2)$ and v_i $(1 \le i \le 4k + 2)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(2) = t_{p\varphi}(3) = 4k + r + 3$ and $t_{p\varphi}(4) = 4k + r + 2$.

Subcase 1(d). $n \equiv 3 \pmod{4}$.

Let n = 4k + 3 and $k \in \mathbb{N}$. As in case 4 of Theorem 3.1, fix the label to the vertices u, v, u_i $(1 \le i \le 4k + 3)$ and v_i $(1 \le i \le 4k + 3)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(2) =$

 $t_{p\varphi}(4) = 4k + r + 4$ and $t_{p\varphi}(3) = 4k + r + 3$.

Case 2.
$$p + q \equiv 1 \pmod{4}$$
.

Suppose $t_{pf}(1) = t_{pf}(2) = t_{pf}(3) = r$ and $t_{pf}(4) = r + 1$.

Subcase 2(a). $n \equiv 0 \pmod{4}$. Let n = 4k and $k \in \mathbb{N}$. As in case 1 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k)$ and v_i $(1 \le i \le 4k)$. Next we relabel the vertices 3, 4 and 2 by u_{2k} , v_{4k-1} and v_{4k} respectively. Let h be this relabeled technique of the bister B. Let

relabeled technique of the bistar
$$B_{n,n}$$
. Let

$$\varphi(u) = \begin{cases} f(u), & \text{if } u \in V(G) \\ g(u), & \text{if } u \in B_{n,n} \end{cases} (1)$$

Then $t_{p\phi}(1) = t_{p\phi}(2) = t_{p\phi}(3) = t_{p\phi}(4) = 4k + r + 1$. Subcase 2(b). $n \equiv 1 \pmod{4}$.

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ 1) and v_i ($1 \le i \le 4k + 1$). Finally we relabel the vertex u_{2k} by $\overline{3}$ and v_{4k} by 4. Let *h* be defined by the relabeled technique of the bistar $B_{n,n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p\phi}(1) = t_{p\phi}(2) = t_{p\phi}(3) = t_{p\phi}(4) = 4k + r + 2.$ Subcase 2(c). $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 and $k \in \mathbb{N}$. As in case 3 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 2)$ and v_i ($1 \le i \le 4k+2$) together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(2) =$

$$t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 3.$$

Subcase 2(d). $n \equiv 3 \pmod{4}$.

Let n = 4k + 3 and $k \in \mathbb{N}$. As in case 4 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 3)$ and v_i $(1 \le i \le 4k + 3)$. Finally we relabel the vertex u_{4k+2} by 3 and v_{4k+1} by 1. Then $t_{p\phi}(1) =$ $t_{p\varphi}(2) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 4$ where h and φ defined as in (1).

Case 3.
$$p + q \equiv 1 \pmod{4}$$
.

Suppose $t_{pf}(1) = t_{pf}(2) = t_{pf}(4) = r$ and $t_{pf}(3) = r + 1$.

Subcase 3(a).
$$n \equiv 0 \pmod{4}$$
.

Let n = 4k and $k \in \mathbb{N}$. As in case 1 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k)$ and v_i $(1 \le i \le 4k-3)$. Next

we assign the labels 2, 2 and 2 to the vertices v_{4k-2} , v_{4k-1} and v_{4k} respectively. Let h be defined by the relabeled technique of the bistar $B_{n,n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p\varphi}(1)$ $= t_{p\varphi}(2) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 1.$

Subcase 3(b).
$$n \equiv 1 \pmod{4}$$

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ and v_i $(1 \le i \le 4k + 1)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(2) =$

$$t_{p\phi}(3) = t_{p\phi}(4) = 4k + r + 2.$$

Subcase 3(c). $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 and $k \in \mathbb{N}$. As in case 3 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + i)$ 2) and v_i ($1 \le i \le 4k + 2$). Finally we relabel the vertex u_{4k+2} by 3 and v_{4k+2} by 4. Then $t_{p\varphi}(1) =$ $t_{p\varphi}(2) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 3$ where *h* and φ defined as in (1).

Subcase 3(d).
$$n \equiv 3 \pmod{4}$$

Let n = 4k + 3 and $k \in \mathbb{N}$. As in case 4 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 3)$ and v_i $(1 \le i \le 4k+3)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\phi}(1) = t_{p\phi}(2) =$

$$t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 4.$$

Case 4. $p + q \equiv 1 \pmod{4}$.

Suppose
$$t_{pf}(1) = t_{pf}(3) = t_{pf}(4) = r$$
 and $t_{pf}(2) = r + 1$.

Subcase 4(a). $n \equiv 0 \pmod{4}$.

Let n = 4k and $k \in \mathbb{N}$. As in case 1 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k)$ and v_i $(1 \le i \le 4k)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(2) = t_{p\varphi}(3) =$

$$t_{p\varphi}(4) = 4k + r + 1.$$

Subcase 4(b).
$$n \equiv 1 \pmod{4}$$
.

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ and v_i $(1 \le i \le 4k + 1)$. Finally we relabel the vertex u_{4k} by 3 and v_{4k-1} by 2. Let h be defined by the relabeled technique of the bistar $B_{n,n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p\phi}(1) = t_{p\phi}(2) = t_{p\phi}(3) = t_{p\phi}(4) = 4k + r + 2.$

Subcase 4(c).
$$n \equiv 2 \pmod{4}$$
.

Let n = 4k + 2 and $k \in \mathbb{N}$. As in case 3 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ 2) and v_i $(1 \le i \le 4k + 2)$. Finally we relabel the vertex v_{4k} by 4. Then $t_{p\varphi}(1) = t_{p\varphi}(2) = t_{p\varphi}(3) = t_{p\varphi}(3)$ $t_{p\varphi}(4) = 4k + r + 3$ where *h* and φ defined as in (1).

Subcase 4(d). $n \equiv 3 \pmod{4}$.

Let n = 4k + 3 and $k \in \mathbb{N}$. As in case 4 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 3)$ and v_i ($1 \le i \le 4k+3$). Finally we relabel the vertex v_{4k} by 3. Let h be defined by the relabeled technique of the bistar $B_{n,n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p\varphi}(1) = t_{p\varphi}(2)$ $= t_{p\phi}(4) = 4k + r + 4$ and $t_{p\phi}(3) = 4k + r + 5$.

Case 5. $p + q \equiv 1 \pmod{4}$. Suppose $t_{pf}(2) = t_{pf}(3) = t_{pf}(4) = r$ and $t_{pf}(1) = r + 1$. Subcase 5(a). $n \equiv 0 \pmod{4}$.

Let n = 4k and $k \in \mathbb{N}$. As in case 1 of Theorem 3.1, fix the label to the vertices u, v, u_i $(1 \le i \le 4k)$ and v_i $(1 \le i \le 4k)$. Finally we relabel the vertex v_{4k} by 2. Then $t_{p\varphi}(1) = t_{p\varphi}(2) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 1$ where h and φ defined as in (1).

Subcase 5(b). $n \equiv 1 \pmod{4}$.

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ and v_i $(1 \le i \le 4k + 1)$. Finally we relabel the vertex u_{4k+1} by 3, v_{4k-1} and v_{4k} by 2. Let h be defined by the relabeled technique of the bistar $B_{n,n}$ in (1). Let φ be the function as in (1). It is easy

to verify that $t_{p\phi}(1) = t_{p\phi}(2) = t_{p\phi}(3) = t_{p\phi}(4) = 4k + r + 2$.

Subcase 5(c). $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 and $k \in \mathbb{N}$. As in case 3 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 2)$ and v_i $(1 \le i \le 4k + 2)$. Finally we relabel the vertex u_{4k+2} by 4 and v_{4k+1} by 1. Let h be defined by the relabeled technique of the bistar $B_{n,n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p\varphi}(1) = t_{p\varphi}(2) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 3$.

Subcase 5(d). $n \equiv 3 \pmod{4}$.

Let n = 4k + 3 and $k \in \mathbb{N}$. As in case 4 of Theorem 3.1, fix the label to the vertices u, v, u_i $(1 \le i \le 4k+3)$ and v_i $(1 \le i \le 4k+3)$. Finally we relabel the vertex v_{4k+2} by 3. Then $t_{p\varphi}(1) = t_{p\varphi}(2) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 4$ where h and φ defined as in (1).

Case 6. $p+q \equiv 2 \pmod{4}$.

Suppose $t_{pf}(1) = t_{pf}(2) = r + 1$ and $t_{pf}(3) = t_{pf}(4) = r$.

Subcase 6(a). $n \equiv 0 \pmod{4}$.

Let n = 4k and $k \in \mathbb{N}$. As in case 1 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k)$ and v_i $(1 \le i \le 4k)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = 4k + r + 2$ and $t_{p\varphi}(2) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 1$.

Subcase 6(b). $n \equiv 1 \pmod{4}$.

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, fix the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ and v_i $(1 \le i \le 4k + 1)$. Finally we relabel the vertex u_{4k+1} by 3 and v_{4k} by 2. Then $t_{p\varphi}(1) = 4k + r + 3$ and $t_{p\varphi}(2) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 2$ where h and φ defined as in (1). Subcase 6(c). $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 and $k \in \mathbb{N}$. The proof is similar to Subcase 5(c) in Case

5. Then $t_{p\phi}(1) = t_{p\phi}(3) = t_{p\phi}(4) = 4k + r + 3$ and $t_{p\phi}(2) = 4k + r + 4$.

Subcase 6(d). $n \equiv 3 \pmod{4}$.

Let n = 4k+3 and $k \in \mathbb{N}$. The proof is similar to Subcase 5(d) in Case 5. Then $t_{p\phi}(1) = t_{p\phi}(3) = t_{p\phi}(4) = 4k + r + 4$ and $t_{p\phi}(2) = 4k + r + 5$.

5. Then $i_{p\phi}(1) = i_{p\phi}(3) = i_{p\phi}(4) = 4k + 7 + 4$

Case 7. $p + q \equiv 2 \pmod{4}$. Suppose $t_{pf}(1) = t_{pf}(3) = r + 1$ and $t_{pf}(2) = t_{pf}(4) = r$.

Subcase 7(a). $n \equiv 0 \pmod{4}$.

Let n = 4k and $k \in \mathbb{N}$. The proof is similar to Subcase 5(a) in Case 5. Then $t_{p\phi}(1) = t_{p\phi}(2) = t_{p\phi}(4) = 4k + r + 1$ and $t_{p\phi}(3) = 4k + r + 2$.

Subcase 7(b).
$$n \equiv 1 \pmod{4}$$
.

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ and v_i $(1 \le i \le 4k + 1)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = 4k + r + 3$ and $t_{p\varphi}(2) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 2$.

Subcase 7(c). $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 and $k \in \mathbb{N}$. The proof is similar to Subcase 5(c) in Case

5. Then $t_{p\phi}(1) = t_{p\phi}(2) = t_{p\phi}(4) = 4k + r + 3$ and $t_{p\phi}(3) = 4k + r + 4$.

Subcase 7(d).
$$n \equiv 3 \pmod{4}$$
.

Let n = 4k + 3 and $k \in \mathbb{N}$. As in case 4 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 3)$ and v_i $(1 \le i \le 4k + 3)$ together with the 4-total prime cordial f of G is also satisfies the condition of

4-total prime cordial labeling of this case. Then $t_{p\phi}(1) = 4k + r + 5$ and $t_{p\phi}(2) = t_{p\phi}(3) = t_{p\phi}(4) = 4k + r + 4$.

Case 8. $p + q \equiv 2 \pmod{4}$.

Suppose $t_{pf}(1) = t_{pf}(4) = r + 1$ and $t_{pf}(2) = t_{pf}(3) = r$.

Subcase 8(a). $n \equiv 0 \pmod{4}$.

Let n = 4k and $k \in \mathbb{N}$. The proof is similar to Subcase 5(a) in Case 5. Then $t_{p\phi}(1) = t_{p\phi}(2) = t_{p\phi}(3) = 4k + r + 1$ and $t_{p\phi}(4) = 4k + r + 2$.

Subcase 8(b). $n \equiv 1 \pmod{4}$.

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ and v_i $(1 \le i \le 4k + 1)$. Finally we relabel the vertex u_{4k} by 3 and u_{4k+1} by 1. Let h be defined by the relabeled technique of the bistar $B_{n,n}$ in (1). Let φ be the function as

in (1). It is easy to verify that $t_{p\phi}(1) = t_{p\phi}(2) = t_{p\phi}(4) = 4k + r + 2$ and $t_{p\phi}(3) = 4k + r + 3$. Subcase 8(c). $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 and $k \in \mathbb{N}$. As in case 3 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 2)$ and v_i $(1 \le i \le 4k + 2)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = 4k + r + 4$ and $t_{p\varphi}(2) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 3$.

Subcase 8(d). $n \equiv 3 \pmod{4}$.

Let n = 4k+3 and $k \in \mathbb{N}$. The proof is similar to Subcase 5(d) in Case

5. Then $t_{p\phi}(1) = t_{p\phi}(2) = t_{p\phi}(3) = 4k + r + 4$ and $t_{p\phi}(4) = 4k + r + 5$.

Case 9. $p + q \equiv 2 \pmod{4}$.

Suppose $t_{pf}(2) = t_{pf}(3) = r + 1$ and $t_{pf}(1) = t_{pf}(2) = r$.

Subcase 9(a). $n \equiv 0 \pmod{4}$.

Let n = 4k and $k \in \mathbb{N}$. As in case 1 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k)$ and v_i $(1 \le i \le 4k)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(2) = t_{p\varphi}(4) = 4k + r + 1$ and $t_{p\varphi}(3) = 4k + r + 2$. Subcase 9(b). $n \equiv 1 \pmod{4}$.

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ and v_i $(1 \le i \le 4k + 1)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(3) =$

$$t_{p\varphi}(4) = 4k + r + 2$$
 and $t_{p\varphi}(2) = 4k + r + 3$.

Subcase 9(c). $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 and $k \in \mathbb{N}$. As in case 3 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 2)$ and v_i $(1 \le i \le 4k + 2)$. Finally we relabel the vertex u_{4k+2} by 3 and v_{4k+2} by 4. Let h be defined by the relabeled technique of the bistar $B_{n,n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p\varphi}(1) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 3$ and $t_{p\varphi}(2) = 4k + r + 4$.

Subcase 9(d).
$$n \equiv 3 \pmod{4}$$
.

Let n = 4k + 3 and $k \in \mathbb{N}$. As in case 4 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 3)$ and v_i $(1 \le i \le 4k + 3)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(2) = 4k + r + 5$ and $t_{p\varphi}(1) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 4$.

Case 10.
$$p + q \equiv 2 \pmod{4}$$
.

Suppose $t_{pf}(2) = t_{pf}(4) = r + 1$ and $t_{pf}(1) = t_{pf}(3) = r$.

Subcase 10(a). $n \equiv 0 \pmod{4}$.

Let n = 4k and $k \in \mathbb{N}$. As in case 1 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k)$ and v_i $(1 \le i \le 4k)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(2) = t_{p\varphi}(3) = 4k + r + 1$ and $t_{p\varphi}(4) = 4k + r + 2$.

Subcase 10(b). $n \equiv 1 \pmod{4}$.

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ and v_i $(1 \le i \le 4k + 1)$. Finally we relabel the vertex u_{4k+1} by 3 and v_{4k+1} by 2. Let h be defined by the relabeled technique of the bistar $B_{n,n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p\varphi}(2) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 2$ and $t_{p\varphi}(1) = 4k + r + 3$.

Subcase 10(c).
$$n \equiv 2 \pmod{4}$$
.

Let n = 4k + 2 and $k \in \mathbb{N}$. As in case 3 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 2)$ and v_i $(1 \le i \le 4k + 2)$ together with the 4-total prime cordial f of G is also satisfies the condition of

4-total prime cordial labeling of this case. Then $t_{p\phi}(1) = t_{p\phi}(3) = t_{p\phi}(4) = 4k + r + 3$ and $t_{p\phi}(2) = 4k + r + 4$.

Subcase 10(d). $n \equiv 3 \pmod{4}$.

Let n = 4k+3 and $k \in \mathbb{N}$. As in case 4 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k+3)$ and v_i $(1 \le i \le 4k+3)$. Finally we relabel the vertex u_{4k+2} by 3 and v_{4k+3} by 1. Let h be defined by the relabeled technique of the bistar $B_{n,n}$ in (1). Let φ be the function as in (1). It is easy to verify that

 $t_{p\phi}(1) = t_{p\phi}(2) = t_{p\phi}(3) = 4k + r + 4$ and $t_{p\phi}(4) = 4k + r + 5$.

Case 11.
$$p + q \equiv 2 \pmod{4}$$
.

Suppose $t_{pf}(3) = t_{pf}(4) = r + 1$ and $t_{pf}(1) = t_{pf}(2) = r$.

Subcase 11(a). $n \equiv 0 \pmod{4}$.

Let n = 4k and $k \in \mathbb{N}$. As in case 1 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k)$ and v_i $(1 \le i \le 4k)$. Finally we relabel the vertex u_{2k} by 1, v_{4k-1} by 4 and v_{4k} by 2. Let h be defined by

the relabeled technique of the bistar $B_{n,n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p\varphi}(1) = t_{p\varphi}(2) = t_{p\varphi}(4) = 4k + r + 1$ and $t_{p\varphi}(3) = 4k + r + 2$.

Subcase 11(b). $n \equiv 1 \pmod{4}$.

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ and v_i $(1 \le i \le 4k + 1)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\phi}(1) = t_{p\phi}(2) = t_{p\phi}(3) = 4k + r + 2$ and $t_{p\phi}(4) = 4k + r + 3$.

Subcase 11(c). $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 and $k \in \mathbb{N}$. As in case 3 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 2)$ and v_i $(1 \le i \le 4k + 2)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\phi}(1) = t_{p\phi}(2) = t_{p\phi}(4) = 4k + r + 3$ and $t_{p\phi}(3) = 4k + r + 4$.

Subcase 11(d). $n \equiv 3 \pmod{4}$.

Let n = 4k+3 and $k \in \mathbb{N}$. As in case 4 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k+3)$ and v_i $(1 \le i \le 4k+3)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\phi}(1) = t_{p\phi}(2) = t_{p\phi}(2)$

 $t_{p\varphi}(3) = 4k + r + 4$ and $t_{p\varphi}(4) = 4k + r + 5$.

Case 12. $p + q \equiv 3 \pmod{4}$.

Suppose $t_{pf}(1) = t_{pf}(2) = t_{pf}(3) = r + 1$ and $t_{pf}(4) = r$.

Subcase 12(a). $n \equiv 0 \pmod{4}$.

Let n = 4k and $k \in \mathbb{N}$. As in case 1 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k)$ and v_i $(1 \le i \le 4k)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 2$ and $t_{p\varphi}(2) = 4k + r + 1$. Subcase 12(b). $n \equiv 1 \pmod{4}$.

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ and v_i $(1 \le i \le 4k + 1)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(2) = 4k + r + 3$ and $t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 2$.

Subcase 12(c). $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 and $k \in \mathbb{N}$. The proof is similar to Subcase 5(c) in Case

5. Then $t_{p\varphi}(1) = t_{p\varphi}(4) = 4k + r + 3$ and $t_{p\varphi}(2) = t_{p\varphi}(3) = 4k + r + 4$.

Subcase 12(d). $n \equiv 3 \pmod{4}$.

Let n = 4k + 3 and $k \in \mathbb{N}$. As in case 4 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 3)$ and v_i $(1 \le i \le 4k + 3)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(2) = 4k + r + 5$ and $t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 4$.

Case 13. $p + q \equiv 3 \pmod{4}$.

Suppose $t_{pf}(1) = t_{pf}(2) = t_{pf}(4) = r + 1$ and $t_{pf}(3) = r$. Subcase 13(a). $n \equiv 0 \pmod{4}$.

Let n = 4k and $k \in \mathbb{N}$. As in case 1 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k)$ and v_i $(1 \le i \le 4k)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\phi}(1) = t_{p\phi}(4) = 4k + r + 2$ and $t_{p\phi}(2) = t_{p\phi}(3) = 4k + r + 1$.

Subcase 13(b). $n \equiv 1 \pmod{4}$.

Let n = 4k+1 and $k \in \mathbb{N}$. The proof is similar to Subcase 4(b) in Case

4. Then $t_{p\phi}(1) = t_{p\phi}(4) = 4k + r + 3$ and $t_{p\phi}(2) = t_{p\phi}(3) = 4k + r + 2$.

Subcase 13(c). $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 and $k \in \mathbb{N}$. As in case 3 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 2)$ and v_i ($1 \le i \le 4k + 2$) together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(2) = 4k + r + 4$ and $t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r$ +3.

Subcase 13(d). $n \equiv 3 \pmod{4}$. Let n = 4k + 3 and $k \in \mathbb{N}$. As in case 3 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + i)$ 3) and v_i ($1 \le i \le 4k + 3$). Finally we relabel the vertex u_{4k+3} by 3. Let h be defined by the

relabeled technique of the bistar $B_{n,n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p\varphi}(1)$ $= t_{p\phi}(2) = 4k + r + 4$ and $t_{p\phi}(3) = t_{p\phi}(4) = 4k + r + 5$.

Case 14. $p + q \equiv 3 \pmod{4}$.

Suppose $t_{pf}(1) = t_{pf}(3) = t_{pf}(4) = r + 1$ and $t_{pf}(2) = r$.

Subcase 14(a). $n \equiv 0 \pmod{4}$.

Let n = 4k and $k \in \mathbb{N}$. The proof is similar to Subcase 5(a) in Case 5. Then $t_{p\varphi}(1) = t_{p\varphi}(2) = 4k + r + 1$ and $t_{p\phi}(3) = t_{p\phi}(4) = 4k + r + 2.$

Subcase 14(b). $n \equiv 1 \pmod{4}$.

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ and v_i $(1 \le i \le 4k + 1)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = 4k + r + 3$ and $t_{p\varphi}(2) = t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 3$ 2

Subcase 14(c). $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 and $k \in \mathbb{N}$. As in case 3 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 2)$ and v_i ($1 \le i \le 4k + 2$) together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(3) = 4k + r + 4$ and $t_{p\varphi}(2) = t_{p\varphi}(4) = 4k + r$ +3.

Subcase 14(d). $n \equiv 3 \pmod{4}$.

Let n = 4k + 3 and $k \in \mathbb{N}$. As in case 4 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 3)$ and v_i $(1 \le i \le 4k + 3)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(4) = 4k + r + 5$ and $t_{p\varphi}(2) = t_{p\varphi}(3) = 4k + r$ +4

Case 15. $p + q \equiv 3 \pmod{4}$.

Suppose $t_{pf}(2) = t_{pf}(3) = t_{pf}(4) = r + 1$ and $t_{pf}(1) = r$.

Subcase 15(a). $n \equiv 0 \pmod{4}$.

Let n = 4k and $k \in \mathbb{N}$. As in case 1 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k)$ and v_i ($1 \le i \le 4k$) together with the 4-total prime cordial f of \tilde{G} is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(2) = 4k + r + 1$ and $t_{p\varphi}(3) = t_{p\varphi}(4) = 4k + r + 2$.

Subcase 15(b). $n \equiv 1 \pmod{4}$.

Let n = 4k + 1 and $k \in \mathbb{N}$. As in case 2 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 1)$ and v_i ($1 \le i \le 4k + 1$) together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\varphi}(1) = t_{p\varphi}(3) = 4k + r + 2$ and $t_{p\varphi}(2) = t_{p\varphi}(4) = 4k + r$ +3.

Subcase 15(c). $n \equiv 2 \pmod{4}$.

Let n = 4k + 2 and $k \in \mathbb{N}$. As in case 3 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 2)$ and v_i $(1 \le i \le 4k + 2)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\phi}(1) = t_{p\phi}(4) = 4k + r + 3$ and $t_{p\phi}(2) = t_{p\phi}(3) = 4k + r$ +4.

Subcase 15(d). $n \equiv 3 \pmod{4}$.

Let n = 4k + 3 and $k \in \mathbb{N}$. As in case 4 of Theorem 3.1, assign the label to the vertices u, v, u_i $(1 \le i \le 4k + 3)$ and v_i $(1 \le i \le 4k+3)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p\phi}(1) = t_{p\phi}(3) = 4k + r + 4$ and $t_{p\phi}(2) = t_{p\phi}(4) = 4k + r$ +5.

5. Illustration

4-total prime cordial graph of Jelly fish $J_{5,5}$ is given below:

Figure 1

Figure 2. *B*_{5,5}

Change the label of u_4 by 3 and v_5 by 2 as in Subcase 4(b). We get a 4-total prime cordial labeling of $J_{5,5} \cup B_{5,5}$ is shown in Figure 3.

Figure 3. $J_{5,5} \cup B_{5,5}$

6. Conclusion

We have discuss the 4-total prime cordial labeling of $G \cup B_{n,n}$, where G is a 4-total prime cordial graph. The investigation of 4-total prime cordiality of $G \cup H$, G is a 4-total prime cordial graphs and H is any other graphs is an open problem for future research work.

References

- [1] Abdullah Aljouiee, On Prime Cordial Labeling of Graphs, *Kyungpook Math. J.*, 56 (2016), 41-46.
- [2] I.Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, *Ars Combinatoria*, 23(1987), 201-207.
- [3] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2017) #Ds6.
- [4] G.V.Ghodasara and J.P.Jena, Prime Cordial Labeling of the Graphs Related to Cycle with One Chord, Twin Chords and Triangle, *International Journal of Pure and Applied Mathematics*, 89(1), (2013), 79-87.
- [5] F.Harary, Graph theory, Addision wesley, New Delhi (1969).
- [6] R.Ponraj, J.Maruthamani and R.Kala, *k*-Total prime cordial labeling of graphs, *Journal of Algorithms and Computation*, 50(1), 143-149.
- [7] R.Ponraj, J.Maruthamani and R.Kala, 4-total prime cordial labeling of some special graphs, *Jordan Journal of Mathematics and Statistics*, 13(1) (2020), 153-168.
- [8] R.Ponraj, J.Maruthamani and R.Kala, New Families of 4-total prime cordial graph, *Jordan Journal of Mathematics and Statistics*, 13(4) (2020), 547-563.
- [9] R.Ponraj and J.Maruthamani, 4-total prime cordial labeling of some derived graphs, *Ars Combinatoria*, (Accept for Publication).
- [10] A.H.Rokad, Product Cordial Labeling of Double Wheel and Double Fan Re- lated Graphs, *Kragujevac Journal of Mathematics*, 43(1) (2019), 7-13.

- Assistant Professor, P.G Department of Mathematics, Thiruvalluvar College, Papanasam-627 412, Tamilnadu, India. *E-mail address*: drjmaths@gnail.com
 Associate Professor and Hand
- Associate Professor and Head, P.G and Research Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur-628 216, Tamilnadu, India. *E-mail address*: pasunkilipandian@yahoo.com