Union Of 4-Total Prime Cordial Graph G With The Bistar $B_{n, N}$

J. Maruthamani ${ }^{1}$ And S. Pasunkili Pandian ${ }^{2}$

Abstract

Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \ldots, k\}$ be a map where $k \in \mathrm{~N}$ is a variable and $k>1$. For each edge $u v$, assign the label $\operatorname{gcd}(f(u), f(v))$. The map f is called a k - Total prime cordial labeling of G if $\left|t_{p f}(i)-t_{p f}(j)\right| \leq 1, i, j \in$ $\{1,2, \cdots, k\}$ where $t_{p f}(x)$ denotes the total number of vertices and the edges labelled with x. A graph with a k-total prime cordial labeling is called k-total prime cordial graph. In this paper we investigate the 4-total prime cordial labeling of $G \cup B_{n, n}$, where G has a 4-total prime cordial labeling and $B_{n, n}$ is a bistar.

1. Introduction

Graphs considered here are finite, simple and undirected. A weaker version of graceful and harmonious labeling called cordial labeling was introduced by cahit [2]. Several cordial related labelings have been studied in [1, 10, 4]. Ponraj et al. [6], have been introduced the notion of k-total prime cordial labeling and the k-total prime cordial labeling of some graphs have been investigated. In this paper, we investigate the 4-total prime cordial labeling of $G \cup B_{n, n}$, where G has a 4-total prime cordial labeling and $B_{n, n}$ is a bistar.

2. \boldsymbol{k}-total prime cordial labeling

Definition 2.1. Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \ldots, k\}$ be a function where $k \in \mathrm{~N}$ is a variable and $k>1$. For each edge $u v$, assign the label $\operatorname{gcd}(f(u), f(v))$. The map f is called k-Total prime cordial labeling of G if $\left|t_{p f}(i)-t_{p f}(j)\right| \leq 1, i, j \in\{1,2, \cdots, k\}$ where $t_{p f}(x)$ denotes the total number of vertices and the edges labelled with
x. A graph with a k-total prime cordial labeling is called k-total prime cordial graph.
2000 Mathematics Subject Classification. 05C78.
Key words and phrases. Prime Cordial Graph, k-total prime cordial graph, Bis- tar, Union of Graphs.
Definition 2.2. The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V$ $\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.
Definition 2.3. A bipartite graph is a graph whose vertex set $V(G)$ can be partitioned into two subsets V_{1} and V_{2} such that every edge of G joins a vertex of V_{1} with a vertex of V_{2}. If G contains every edge joining V_{1} and V_{2}, then G is a complete bipartite graph. If $\left|V_{1}\right|=m$
and $\left|V_{2}\right|=n$, then the complete bipartite graph is denoted by $K_{m, n}$.
Definition 2.4. $K_{1, n}$ is called a star.
Definition 2.5. The bistar $B_{m, n}$ is the graph obtained by making adjacent the two central vertices of $K_{1, m}$ and $K_{1, n}$.

3. Preliminaries

Theorem 3.1. [6] The bistar $B_{n, n}$ is 4-total prime cordial for all values of n.
Before proving the main theorem, we once again defined the 4-total prime cordial labeling g of the bistar $B_{n, n}$:

For $n=4 k$ and $k \in \mathrm{~N}$. The labeling pattern is given in Table 1

Vertices	Labels
u	4
v	3
$u_{1}, \ldots, u_{2 k}$	4
$u_{2 k+1}, \ldots, u_{4 k}$	2
$v_{1}, \ldots, v_{2 k}$	3
$v_{2 k+1}, \ldots, v_{4 k}$	1

Table 1:
In the case of $n=4 k+1$ and $k \in \mathrm{~N}$. The labeling pattern is given in Table 2

The Ciência \& Engenharia - Science \& Engineering Journal ISSN: 0103-944X
Volume 11 Issue 1, 2023
pp: 2195-2205

Vertices	Labels
u	4
v	3
$u_{1}, \ldots, u_{2 k}$	4
$u_{2 k+1}, \ldots, u_{4 k}$	2
$u 4 k+1$	2
$v_{1}, \ldots, v_{2 k}$	3
$v_{2 k+1}, \ldots, v_{4 k}$	1
$v_{4 k+1}$	4

Table 2:

For $n=4 k+2$ and $k \in \mathrm{~N}$. The labeling patter n is given in Table 3

Vertices	Labels
u	4
v	3
$u_{1}, \ldots, u_{2 k}$	4
$u_{2 k+1}, \ldots, u_{4 k}$	2
$u_{4 k+1}$	2
$u 4 k+2$	1
$v_{1}, \ldots, v_{2 k}$	3
$v 2 k+1, \ldots, v 4 k-1$	1
$v 4 k$	3
$v 4 k+1$	2
$v 4 k+2$	4

n is given in Table 3
In the case of $n=4 k+3$ and $k \in \mathrm{~N}$. The labeling pattern is given in Table 4

Vertices	Labels
u	4
v	3
$u_{1}, \ldots, u_{2 k}$	4
$u_{2 k+1}, \ldots, u_{4 k}$	2
$u 4 k+1$	2
$u 4 k+2$	1
$u 4 k+3$	4
$v_{1}, \ldots, v_{2 k}$	3
$v_{2 k+1}, \ldots, v 4 k-1$	1
$v 4 k$	3
$v 4 k+1$	2
$v 4 k+2$	4
$v 4 k+3$	2

Table 4:For $n \in\{1,2,3\}$. The labeling pattern is given in Table 5

n	u	v	u_{1}	u_{2}	u_{3}	v_{1}	v_{2}	v_{3}
$B_{1,1}$	2	3	4			4		
$B_{2,2}$	4	3	4	2		3	1	
$B_{3,3}$	4	3	4	2	2	3	1	4

Table 5:
Remark. 2-total prime cordial graph is 2-total product cordial graph.
4. Main Results

Theorem 4.1. Let G be a (p, q) 4- total prime cordial graph then,
$G \cup B_{n, n}$ is 4- total prime cordial for all $n \geq 4$.
Proof. Let u, v be the central vertices of the bistar $B_{n, n}$ and $u_{i}(1 \leq i \leq n)$ be the pendent vertices adjacent to u and $v_{i}(1 \leq i \leq n)$ be the pendent vertices adjacent to v. Let f be the 4 - total prime cordial labeling of G and g be the 4 - total prime cordial labeling of bistar $B_{n, n}$
as in Theorem 3.1. We now define $\varphi: V(G) \cup V\left(B_{n, n}\right) \rightarrow\{1,2,3,4\}$ by

$$
\varphi(u)= \begin{cases}f(u), & \text { if } u \in V(G) \\ g(u), & \text { if } u \in B_{n, n}\end{cases}
$$

To prove our result, we have to split the proof into 15 cases.

Case 1. $p+q \equiv 0(\bmod 4)$.
Suppose $t_{p f}(1)=t_{p f}(2)=t_{p f}(3)=t_{p f}(4)=r$.
Subcase 1(a). $n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. As in case 1 of Theorem 3.1, fix the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k)$ and $v_{i}(1 \leq$ $i \leq 4 k$) together with the 4 - total prime cordial f of G is also satisfies the condition of 4 -total prime cordial labeling of this case. Then $t_{p p}(1)=t_{p p}(2)=t_{p p}(3)=4 k+r+1$ and $t_{p q}(4)=4 k+r$.
Subcase $1(b) . n \equiv 1(\bmod 4)$.
Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, fix the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+1)$ and $v_{i}(1 \leq i \leq 4 k+1)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=$
$t_{p \varphi}(4)=4 k+r+2$ and $t_{p \varphi}(3)=4 k+r+1$.
Subcase $1(\mathrm{c}) . n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. As in case 3 of Theorem 3.1, fix the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+2)$ and $v_{i}(1 \leq i \leq 4 k+2)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=$
$t_{p \varphi}(3)=4 k+r+3$ and $t_{p \varphi}(4)=4 k+r+2$.
Subcase $1(\mathrm{~d}) . n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. As in case 4 of Theorem 3.1, fix the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+3)$ and $v_{i}(1 \leq i \leq 4 k+3)$ together with the 4 -total prime cordial f of G is also satisfies the condition of
4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=$
$t_{p \varphi}(4)=4 k+r+4$ and $t_{p \varphi}(3)=4 k+r+3$.
Case 2. $p+q \equiv 1(\bmod 4)$.
Suppose $t_{p f}(1)=t_{p f}(2)=t_{p f}(3)=r$ and $t_{p f}(4)=r+1$.
Subcase 2(a). $n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. As in case 1 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k)$ and v_{i} $(1 \leq i \leq 4 k)$. Next we relabel the vertices 3,4 and 2 by $u_{2 k}, v_{4 k-1}$ and $v_{4 k}$ respectively. Let h be this relabeled technique of the bistar $B_{n, n}$. Let

$$
\varphi(u)=\left\{\begin{array}{ll}
f(u), & \text { if } u \in V(G) \tag{1}\\
g(u), & \text { if } u \in B_{n, n}
\end{array} .\right.
$$

Then $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+1$.
Subcase 2 (b). $n \equiv 1(\bmod 4)$.

Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+$ 1) and $v_{i}(1 \leq i \leq 4 k+1)$. Finally we relabel the vertex $u_{2 k}$ by 3 and $v_{4 k}$ by 4 . Let h be defined by the relabeled technique of the bistar $B_{n, n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+2$.
Subcase 2(c). $n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. As in case 3 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+2)$ and $v_{i}(1 \leq i \leq 4 k+2)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=$
$t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+3$.
Subcase 2(d). $n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. As in case 4 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+$ 3) and $v_{i}(1 \leq i \leq 4 k+3)$. Finally we relabel the vertex $u_{4 k+2}$ by 3 and $v_{4 k+1}$ by 1 . Then $t_{p \varphi}(1)=$
$t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+4$ where h and φ defined as in (1).
Case 3. $p+q \equiv 1(\bmod 4)$.
Suppose $t_{p f}(1)=t_{p f}(2)=t_{p f}(4)=r$ and $t_{p f}(3)=r+1$.
Subcase 3(a). $n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. As in case 1 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k)$ and $v_{i}(1 \leq i \leq 4 k-3)$. Next
we assign the labels 2, 2 and 2 to the vertices $v_{4 k-2}, v_{4 k-1}$ and $v_{4 k}$ respectively. Let h be defined by the relabeled technique of the bistar $B_{n, n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p \varphi}(1)$ $=t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+1$.
Subcase 3(b). $n \equiv 1(\bmod 4)$.
Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+1)$ and $v_{i}(1 \leq i \leq 4 k+1)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4 -total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=$
$t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+2$.
Subcase 3(c). $n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. As in case 3 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+$ $2)$ and $v_{i}(1 \leq i \leq 4 k+2)$. Finally we relabel the vertex $u_{4 k+2}$ by 3 and $v_{4 k+2}$ by 4 . Then $t_{p \varphi}(1)=$
$t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+3$ where h and φ defined as in (1).
Subcase 3(d). $n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. As in case 4 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+3)$ and $v_{i}(1 \leq i \leq 4 k+3)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4 -total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=$
$t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+4$.
Case 4. $p+q \equiv 1(\bmod 4)$.
Suppose $t_{p f}(1)=t_{p f}(3)=t_{p f}(4)=r$ and $t_{p f}(2)=r+1$.
Subcase 4(a). $n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. As in case 1 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k)$ and $v_{i}(1 \leq i \leq 4 k)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total
prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(3)=$
$t_{p \varphi}(4)=4 k+r+1$.
Subcase 4(b). $n \equiv 1(\bmod 4)$.
Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+1)$ and $v_{i}(1 \leq i \leq 4 k+1)$. Finally we relabel the vertex $u_{4 k}$ by 3 and $v_{4 k-1}$ by 2 . Let h be defined by the relabeled technique of the bistar $B_{n, n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+2$.
Subcase 4(c). $n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. As in case 3 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+$ 2) and $v_{i}(1 \leq i \leq 4 k+2)$. Finally we relabel the vertex $v_{4 k}$ by 4 . Then $t_{p \varphi}(1)=t_{p p}(2)=t_{p \varphi}(3)=$ $t_{p \varphi}(4)=4 k+r+3$ where h and φ defined as in (1).
Subcase $4(\mathrm{~d}) . n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. As in case 4 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+3)$ and $v_{i}(1 \leq i \leq 4 k+3)$. Finally we relabel the vertex $v_{4 k}$ by 3 . Let h be defined by the relabeled technique of the bistar $B_{n, n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p \varphi}(1)=t_{p \varphi}(2)$ $=t_{p \varphi}(4)=4 k+r+4$ and $t_{p \varphi}(3)=4 k+r+5$.

Case 5. $p+q \equiv 1(\bmod 4)$.
Suppose $t_{p f}(2)=t_{p f}(3)=t_{p f}(4)=r$ and $t_{p f}(1)=r+1$.
Subcase $5(a) . n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. As in case 1 of Theorem 3.1, fix the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k)$ and $v_{i}(1$ $\leq i \leq 4 k)$. Finally we relabel the vertex $v_{4 k}$ by 2 . Then $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+1$
where h and φ defined as in (1).
Subcase $5(\mathrm{~b}) . n \equiv 1(\bmod 4)$.
Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+$ 1) and $v_{i}(1 \leq i \leq 4 k+1)$. Finally we relabel the vertex $u_{4 k+1}$ by 3 , $v_{4 k-1}$ and $v_{4 k}$ by 2 . Let h
be defined by the relabeled technique of the bistar $B_{n, n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+2$.
Subcase $5(\mathrm{c}) . n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in N$. As in case 3 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+2)$ and $v_{i}(1 \leq i \leq 4 k+2)$. Finally we relabel the vertex $u_{4 k+2}$ by 4 and $v_{4 k+1}$ by 1 . Let h be defined by the relabeled technique of the bistar $B_{n, n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+3$.
Subcase $5(\mathrm{~d}) . n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. As in case 4 of Theorem 3.1, fix the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+3)$ and $v_{i}(1 \leq i \leq 4 k+3)$. Finally we relabel the vertex $v_{4 k+2}$ by 3 . Then $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=$
$4 k+r+4$ where h and φ defined as in (1).
Case 6. $p+q \equiv 2(\bmod 4)$.
Suppose $t_{p f}(1)=t_{p f}(2)=r+1$ and $t_{p f}(3)=t_{p f}(4)=r$.
Subcase 6(a). $n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. As in case 1 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k)$ and $v_{i}(1 \leq i \leq 4 k)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4 -total prime cordial labeling of this case. Then $t_{p \varphi}(1)=4 k+r+2$ and $t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+$ 1.

Subcase 6(b). $n \equiv 1(\bmod 4)$.
Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, fix the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+1)$ and $v_{i}(1 \leq i \leq 4 k+1)$. Finally we relabel the vertex $u_{4 k+1}$ by 3 and $v_{4 k}$ by 2 . Then $t_{p \varphi}(1)=4 k+r+3$ and $t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+2$ where h and φ defined as in (1).
Subcase 6(c). $n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. The proof is similar to Subcase $5(\mathrm{c})$ in Case
5. Then $t_{p \varphi}(1)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+3$ and $t_{p \varphi}(2)=4 k+r+4$.

Subcase $6(\mathrm{~d}) . n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. The proof is similar to Subcase 5(d) in Case
5. Then $t_{p \varphi}(1)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+4$ and $t_{p \varphi}(2)=4 k+r+5$.

Case 7. $p+q \equiv 2(\bmod 4)$.
Suppose $t_{p f}(1)=t_{p f}(3)=r+1$ and $t_{p f}(2)=t_{p f}(4)=r$.
Subcase 7(a). $n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. The proof is similar to Subcase 5(a) in Case 5. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(4)=4 k+r$ +1 and $t_{p \varphi}(3)=4 k+r+2$.
Subcase 7(b). $n \equiv 1(\bmod 4)$.
Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+1)$ and $v_{i}(1 \leq i \leq 4 k+1)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=4 k+r+3$ and $t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+$ 2.

Subcase 7(c). $n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. The proof is similar to Subcase 5(c) in Case
5. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(4)=4 k+r+3$ and $t_{p \varphi}(3)=4 k+r+4$.

Subcase 7(d). $n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. As in case 4 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+3)$ and $v_{i}(1 \leq i \leq 4 k+3)$ together with the 4 -total prime cordial f of G is also satisfies the condition of

4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=4 k+r+5$ and $t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+$ 4.

Case 8. $p+q \equiv 2(\bmod 4)$.
Suppose $t_{p f}(1)=t_{p f}(4)=r+1$ and $t_{p f}(2)=t_{p f}(3)=r$.
Subcase $8(a) . n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in N$. The proof is similar to Subcase 5(a) in Case 5. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(3)=4 k+r$ +1 and $t_{p \varphi}(4)=4 k+r+2$.
Subcase 8 (b). $n \equiv 1(\bmod 4)$.
Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+1)$ and $v_{i}(1 \leq i \leq 4 k+1)$. Finally we relabel the vertex $u_{4 k}$ by 3 and $u_{4 k+1}$ by 1 . Let h be defined by the relabeled technique of the bistar $B_{n, n}$ in (1). Let φ be the function as
in (1). It is easy to verify that $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(4)=4 k+r+2$ and $t_{p \varphi}(3)=4 k+r+3$.
Subcase 8 (c). $n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. As in case 3 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+2)$ and $v_{i}(1 \leq i \leq 4 k+2)$ together with the 4 -total prime cordial f of G is also satisfies the condition of
4 -total prime cordial labeling of this case. Then $t_{p \varphi}(1)=4 k+r+4$ and $t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+$ 3.

Subcase $8(\mathrm{~d}) . n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. The proof is similar to Subcase 5(d) in Case
5. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(3)=4 k+r+4$ and $t_{p \varphi}(4)=4 k+r+5$.

Case 9. $p+q \equiv 2(\bmod 4)$.
Suppose $t_{p f}(2)=t_{p f}(3)=r+1$ and $t_{p f}(1)=t_{p f}(2)=r$.
Subcase $9(\mathrm{a}) . n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. As in case 1 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k)$ and $v_{i}(1 \leq i \leq 4 k)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total
prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(4)=4 k+r+1$ and $t_{p \varphi}(3)=4 k+r+2$.
Subcase 9 (b). $n \equiv 1(\bmod 4)$.
Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+1)$ and $v_{i}(1 \leq i \leq 4 k+1)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(3)=$
$t_{p \varphi}(4)=4 k+r+2$ and $t_{p \varphi}(2)=4 k+r+3$.
Subcase 9(c). $n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. As in case 3 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+2)$ and $v_{i}(1 \leq i \leq 4 k+2)$. Finally we relabel the vertex $u_{4 k+2}$ by 3 and $v_{4 k+2}$ by 4 . Let h be defined by the relabeled technique of the bistar $B_{n, n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p \varphi}(1)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+3$ and $t_{p \varphi}(2)=4 k+r+4$.
Subcase $9(\mathrm{~d}) . n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. As in case 4 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+3)$ and $v_{i}(1 \leq i \leq 4 k+3)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4 -total prime cordial labeling of this case. Then $t_{p \varphi}(2)=4 k+r+5$ and $t_{p \varphi}(1)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+$ 4.

Case 10. $p+q \equiv 2(\bmod 4)$.
Suppose $t_{p f}(2)=t_{p f}(4)=r+1$ and $t_{p f}(1)=t_{p f}(3)=r$.
Subcase $10(a) . n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. As in case 1 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k)$ and $v_{i}(1 \leq i \leq 4 k)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4 -total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(3)=4 k+r+1$ and $t_{p \varphi}(4)=4 k+r+2$.
Subcase $10(\mathrm{~b}) . n \equiv 1(\bmod 4)$.
Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+1)$ and $v_{i}(1 \leq i \leq 4 k+1)$. Finally we relabel the vertex $u_{4 k+1}$ by 3 and $v_{4 k+1}$ by 2 . Let h be defined by the relabeled technique of the bistar $B_{n, n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+2$ and $t_{p \varphi}(1)=4 k+r+3$.
Subcase $10(\mathrm{c}) . n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. As in case 3 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+2)$ and $v_{i}(1 \leq i \leq 4 k+2)$ together with the 4-total prime cordial f of G is also satisfies the condition of

4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(3)=$
$t_{p \varphi}(4)=4 k+r+3$ and $t_{p \varphi}(2)=4 k+r+4$.
Subcase $10(\mathrm{~d}) . n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. As in case 4 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+3)$ and $v_{i}(1 \leq i \leq 4 k+3)$. Finally we relabel the vertex $u_{4 k+2}$ by 3 and $v_{4 k+3}$ by 1 . Let h be defined by the relabeled technique of the bistar $B_{n, n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(3)=4 k+r+4$ and $t_{p \varphi}(4)=4 k+r+5$.
Case 11. $p+q \equiv 2(\bmod 4)$.
Suppose $t_{p f}(3)=t_{p f}(4)=r+1$ and $t_{p f}(1)=t_{p f}(2)=r$.
Subcase 11(a). $n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. As in case 1 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k)$ and $v_{i}(1 \leq i \leq 4 k)$. Finally we relabel the vertex $u_{2 k}$ by $1, v_{4 k-1}$ by 4 and $v_{4 k}$ by 2 . Let h be defined by
the relabeled technique of the bistar $B_{n, n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p \varphi}(1)=t_{p \varphi}(2)=t_{p \varphi}(4)=4 k+r+1$ and $t_{p \varphi}(3)=4 k+r+2$.
Subcase $11(\mathrm{~b}) . n \equiv 1(\bmod 4)$.
Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+1)$ and $v_{i}(1 \leq i \leq 4 k+1)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=$
$t_{p \varphi}(3)=4 k+r+2$ and $t_{p \varphi}(4)=4 k+r+3$.
Subcase $11(\mathrm{c}) . n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. As in case 3 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+2)$ and $v_{i}(1 \leq i \leq 4 k+2)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=$
$t_{p \varphi}(4)=4 k+r+3$ and $t_{p \varphi}(3)=4 k+r+4$.
Subcase $11(\mathrm{~d}) . n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. As in case 4 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+3)$ and $v_{i}(1 \leq i \leq 4 k+3)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4 -total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=$
$t_{p \varphi}(3)=4 k+r+4$ and $t_{p \varphi}(4)=4 k+r+5$.
Case 12. $p+q \equiv 3(\bmod 4)$.
Suppose $t_{p f}(1)=t_{p f}(2)=t_{p f}(3)=r+1$ and $t_{p f}(4)=r$.
Subcase 12(a). $n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. As in case 1 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k)$ and $v_{i}(1 \leq i \leq 4 k)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+2$ and $t_{p \varphi}(2)=4 k+r+1$. Subcase 12(b). $n \equiv 1(\bmod 4)$.
Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+1)$ and $v_{i}(1 \leq i \leq 4 k+1)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=4 k+r+3$ and $t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r$ +2 .
Subcase $12(\mathrm{c}) . \mathrm{n} \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. The proof is similar to Subcase 5(c) in Case
5. Then $t_{p \varphi}(1)=t_{p \varphi}(4)=4 k+r+3$ and $t_{p \varphi}(2)=t_{p \varphi}(3)=4 k+r+4$.

Subcase $12(\mathrm{~d}) . n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. As in case 4 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+3)$ and $v_{i}(1 \leq i \leq 4 k+3)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=4 k+r+5$ and $t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r$ +4 .
Case 13. $p+q \equiv 3(\bmod 4)$.
Suppose $t_{p f}(1)=t_{p f}(2)=t_{p f}(4)=r+1$ and $t_{p f}(3)=r$.
Subcase $13(\mathrm{a}) . n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. As in case 1 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k)$ and $v_{i}(1 \leq i \leq 4 k)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(4)=4 k+r+2$ and $t_{p \varphi}(2)=t_{p \varphi}(3)=4 k+r+1$.

Let $n=4 k+1$ and $k \in \mathrm{~N}$. The proof is similar to Subcase $4(\mathrm{~b})$ in Case
4. Then $t_{p \varphi}(1)=t_{p \varphi}(4)=4 k+r+3$ and $t_{p \varphi}(2)=t_{p \varphi}(3)=4 k+r+2$.

Subcase 13 (c). $n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. As in case 3 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+2)$ and $v_{i}(1 \leq i \leq 4 k+2)$ together with the 4 -total prime cordial f of G is also satisfies the condition of
4 -total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=4 k+r+4$ and $t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r$ +3 .
Subcase $13(\mathrm{~d}) . n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. As in case 3 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+$ 3) and $v_{i}(1 \leq i \leq 4 k+3)$. Finally we relabel the vertex $u_{4 k+3}$ by 3 . Let h be defined by the relabeled technique of the bistar $B_{n, n}$ in (1). Let φ be the function as in (1). It is easy to verify that $t_{p \varphi}(1)$ $=t_{p \varphi}(2)=4 k+r+4$ and $t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+5$.
Case 14. $p+q \equiv 3(\bmod 4)$.
Suppose $t_{p f}(1)=t_{p f}(3)=t_{p f}(4)=r+1$ and $t_{p f}(2)=r$.
Subcase 14(a). $n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. The proof is similar to Subcase 5(a) in Case 5. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=4 k+r+1$ and $t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+2$.
Subcase 14(b). $n \equiv 1(\bmod 4)$.
Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+1)$ and $v_{i}(1 \leq i \leq 4 k+1)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=4 k+r+3$ and $t_{p \varphi}(2)=t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+$ 2.

Subcase $14(\mathrm{c}) . n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. As in case 3 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+2)$ and $v_{i}(1 \leq i \leq 4 k+2)$ together with the 4 -total prime cordial f of G is also satisfies the condition of
4 -total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(3)=4 k+r+4$ and $t_{p \varphi}(2)=t_{p \varphi}(4)=4 k+r$ +3 .
Subcase $14(\mathrm{~d}) . n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. As in case 4 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+3)$ and $v_{i}(1 \leq i \leq 4 k+3)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(4)=4 k+r+5$ and $t_{p \varphi}(2)=t_{p \varphi}(3)=4 k+r$ +4 .
Case 15. $p+q \equiv 3(\bmod 4)$.
Suppose $t_{p f}(2)=t_{p f}(3)=t_{p f}(4)=r+1$ and $t_{p f}(1)=r$.
Subcase $15(\mathrm{a}) . n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \in \mathrm{~N}$. As in case 1 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k)$ and $v_{i}(1 \leq i \leq 4 k)$ together with the 4-total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(2)=4 k+r+1$ and $t_{p \varphi}(3)=t_{p \varphi}(4)=4 k+r+2$.
Subcase $15(\mathrm{~b}) . n \equiv 1(\bmod 4)$.
Let $n=4 k+1$ and $k \in \mathrm{~N}$. As in case 2 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+1)$ and $v_{i}(1 \leq i \leq 4 k+1)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4-total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(3)=4 k+r+2$ and $t_{p \varphi}(2)=t_{p \varphi}(4)=4 k+r$ +3 .
Subcase $15(\mathrm{c}) . n \equiv 2(\bmod 4)$.
Let $n=4 k+2$ and $k \in \mathrm{~N}$. As in case 3 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+2)$ and $v_{i}(1 \leq i \leq 4 k+2)$ together with the 4 -total prime cordial f of G is also satisfies the condition of
4 -total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(4)=4 k+r+3$ and $t_{p \varphi}(2)=t_{p \varphi}(3)=4 k+r$ +4 .
Subcase $15(\mathrm{~d}) . n \equiv 3(\bmod 4)$.
Let $n=4 k+3$ and $k \in \mathrm{~N}$. As in case 4 of Theorem 3.1, assign the label to the vertices $u, v, u_{i}(1 \leq i \leq 4 k+3)$ and $v_{i}(1 \leq i \leq 4 k+3)$ together with the 4 -total prime cordial f of G is also satisfies the condition of 4 -total prime cordial labeling of this case. Then $t_{p \varphi}(1)=t_{p \varphi}(3)=4 k+r+4$ and $t_{p \varphi}(2)=t_{p \varphi}(4)=4 k+r$ +5 .

The Ciência \& Engenharia - Science \& Engineering Journal
ISSN: 0103-944X
Volume 11 Issue 1, 2023
pp: 2189-2194

5. Illustration

4-total prime cordial graph of Jelly fish $J_{5,5}$ is given below:

Figure 1

Figure 2. $B_{5,5}$
Change the label of u_{4} by 3 and v_{5} by 2 as in Subcase 4(b). We get a 4 -total prime cordial labeling of $J_{5,5} \cup B_{5,5}$ is shown in Figure 3 .

Figure 3. $J_{5,5} \cup B_{5,5}$

6. Conclusion

We have discuss the 4-total prime cordial labeling of $G \cup B_{n, n}$, where G is a 4-total prime cordial graph. The investigation of 4-total prime cordiality of $G \cup H, \mathrm{G}$ is a 4-total prime cordial graphs and H is any other graphs is an open problem for future research work.

References

[1] Abdullah Aljouiee, On Prime Cordial Labeling of Graphs, Kyungpook Math. J., 56 (2016), 41-46.
[2] I.Cahit, Cordial graphs:A weaker version of graceful and harmonious graphs, Ars Combinatoria, 23(1987), 201-207.
[3] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2017) \#Ds6.
[4] G.V.Ghodasara and J.P.Jena, Prime Cordial Labeling of the Graphs Related to Cycle with One Chord, Twin Chords and Triangle , International Journal of Pure and Applied Mathematics, 89(1), (2013), 7987.
[5] F.Harary, Graph theory, Addision wesley, New Delhi (1969).
[6] R.Ponraj, J.Maruthamani and R.Kala, k-Total prime cordial labeling of graphs, Journal of Algorithms and Computation, 50(1), 143-149.
[7] R.Ponraj, J.Maruthamani and R.Kala, 4-total prime cordial labeling of some special graphs, Jordan Journal of Mathematics and Statistics, 13(1) (2020), 153-168.
[8] R.Ponraj, J.Maruthamani and R.Kala, New Families of 4-total prime cordial graph, Jordan Journal of Mathematics and Statistics, 13(4) (2020), 547-563.
[9] R.Ponraj and J.Maruthamani, 4-total prime cordial labeling of some derived graphs, Ars Combinatoria, (Accept for Publication).
[10] A.H.Rokad, Product Cordial Labeling of Double Wheel and Double Fan Re- lated Graphs, Kragujevac Journal of Mathematics, 43(1) (2019), 7-13.

The Ciência \& Engenharia - Science \& Engineering Journal
ISSN: 0103-944X
Volume 11 Issue 1, 2023
pp: 2189-2205

1. Assistant Professor,
P.G Department of Mathematics, Thiruvalluvar College, Papanasam-627 412,

Tamilnadu, India.
E-mail address: drjmaths@gmail.com
2. Associate Professor and Head,
P.G and Research Department of Mathematics, Aditanar College of Arts and Science,

Tiruchendur-628 216,
Tamilnadu, India.
E-mail address: pasunkilipandian@yahoo.com

