Development of Automated Heart Disease Diagnosis System Using Machine Learning Algorithm: Current Status And Future Prospects

¹Dr.Somnath B. Thigale

Head & Associate Professor, CSE Dept.FTC College of Engineering & Research,Sangola.Dist Solapr.413307 drsomnaththigale@gmail.com

²Dr. Vaishnaw G. Kale,

Department of Computer Engineering, Sinhgad Institute of Technology, Lonavla-410401,

Maharashtra, India

Email-vaishnaw25@gmail.com

³Sakshi M Hosamani

Assistant Professor, Dept. of E&TC,

Pune Institute of Computer Technology, Pune, India, 411043. shridevikjamage@gmail.com

⁴Mr.Abhiman B.Honkalas

Assistant Professor, CSE Dept. FTC COER, Sangola

⁵Mr.Gajanan G. Kale

Assistant Professor, CSE Dept. FTC COER, Sangola

Abstract— Nowadays Heart disease is one of the most common and serious disease as it is the one of major cause of death globally. Heart disease prediction is very critical and challenging task. Machine Learning (ML) an important technique in the field of Health care applications. Such systems assist (Not replaces) doctors in the interpretation of diseases. Automated Heart Disease Diagnosis System using Machine Learning Algorithm is amongst popular systems which have attracted the attention of numerous researchers, making it a thrust area for further investigations. In last decade, extensive investigations have been contributed to design Automated Heart Disease Diagnosis System using Machine Learning Algorithm. Designing a heart disease diagnosis system with high accuracy can help to save lives. A comprehensive survey of the developments and current trends in area of Automated Heart Disease Diagnosis System using Machine Learning algorithms is presented in this paper. The survey details the overall advancements in diagnosis or prediction of heart disease and an effective review of pre-processing of data, feature extraction algorithms and the classifiers used in prediction system. Few unaddressed issues and challenges that have comparatively received meagre attention are discussed highlighting the future prospects of Heart Disease Diagnosis and providing pointers to the further research.

Keywords- Machine learning, Heart Disease Diagnosis, Accuracy

A heart is vital organ, it is a main muscular organ of the human body. The heart purposes as the central point assortment and blood dispatch from the lungs to the rest part of body and vice versa. Heart ailments patients are increasing now a days because of the lifestyle, usage of tobacco, work environment, COVID-19, lack of physical activity across all spectrums of age. The high death rates are due to undiagnosed till a critical stage. If a heart does not execute its functions in well manner, then it will affect other organs like brain, kidney, etc. in the human body [3]. Due to cardiovascular diseases (CVDs) an estimated 17.9 million people died in 2019, representing 32% of all global deaths. 85% of these deaths, were due to heart attack and stroke [4].

A. Heart disease

The risk factor of heart related disease comprises of high blood pressure, high Cholesterol, being obese, diabetics, smoking, more alcohol intake or coronary illness family background. Heart attack symptoms are squatness of breath, pain and uneasiness in chest, the pain may feast to the right hand or left hand to the neck, back, jaw, or stomach, fatigue, cold sweat and instability fast or uneven heartbeat, heart burn or atypical pain [3]. The high death rates are due to undiagnosed till a critical stage. For identifying a heart related issues traditional method includes analyzing the results of multiple tests and arriving at a conclusion and there may be change of error as this process includes multiple human interventions.

One of main reason of heart disease becomes very serious conditions because of blockages which prevent flow of blood to the heart. The reason for blockages is fats are deposited on the inner walls of the blood vessels. So, if the blockades are predicted in the early stage, then treatment is provided and the fatality rate could be decreased proportionally. Generally, a medical dataset consists of thousands of records and a number of attributes to be considered to diagnose or predict a particular disease. To achieve this machine learning technique is used. So, the objective of this paper is to discover machine learning algorithms which gives the relationships between various diseases related to heart and patient characteristics in order to assist physicians and which can provide correct solution to predict heart disease at a primary stage with high accuracy and precision.

B. Machine Learning

Machine learning (ML) is a subgroup of Artificial Intelligence (AI) which is advanced from the pattern recognition study and computational learning theory which uses different statistical and analytics techniques for improving the performance of particular machine learning from old data. Basically, it is a collection of techniques and algorithms employed for creating computational systems which learn from the data for making the forecasts and implications. Machine learning application area is abounding.

Machine learning (ML) stands creates an artificial knowledge which is generated through past experience. Initially, the system undergoes learning stage through study of so many examples and it can be generalizing those afterwards. During this learning phase patterns and

The Ciência & Engenharia - Science & Engineering Journal ISSN: 0103-944X Volume 11 Issue 1, 2023 pp: 842 – 853 other regularities are memorized, while inspectin

other regularities are memorized, while inspecting new or unknown data patterns will be discovered, that is called transfer of learning (25). There are so many types of machine learning algorithms, the most common ones are supervised, unsupervised and reinforcement learning. Basic block diagram of ML algorithm is as shown in fig 1.

Fig 1: A Machine Learning Algorithm

There are so many types of machine learning algorithms, the most common ones are supervised, unsupervised and reinforcement learning.

Supervised learning: It includes direct supervision and developer label the dataset limits the algorithm boundaries. The patterns study in the is the purpose of the algorithm and construct widespread guidelines for mapping the input to the class or event. Supervised learning machine learning models can be built using three stages Training, Testing or validation, and Prediction. Supervised learning furthermore categorized into classification and the regression problems.

Unsupervised learning: The overall understanding of data available at hand is nothing but the unsupervised learning. The data is not labeled and also not structured so; the output can't be predicted. There are conditions wherein the preferred output event or class is not known for historic records. The goal in such instances is to examine the patterns withinside the input dataset with a purpose to get accurate expertise and to perceive comparable patterns. These patterns may be congregated in explicit events or classes. There is no any necessity of interventions for such algorithms, so they are known as unsupervised learning. Applications of this type of learning are data compression and clustering.

Clustering is nothing but regularities and patterns with likenesses are grouped together withinside an identical group. For identification of new groups, clustering can be employed within the data. However, in the data compression, a big quantity of data is abridged or compressed during operation. Accordingly, memory is abridged and time required for transmission is reduced.

Reinforcement Learning: It may be associated to humans learning method. In the system, there is separate learning for exploiting its performance either by receiving reward or by punishment reaction from the environment. Reinforcement learning algorithms are employed for mapping the situations to actions which will lead to supreme final reward. When an action

The Ciência & Engenharia - Science & Engineering Journal ISSN: 0103-944X Volume 11 Issue 1, 2023 pp: 842 – 853 is mapped, the algorithm should take into account instantaneous as well as the next and all subsequent rewards [24].

Machine Learning (ML) technique will be used to find different patterns and it can provide required information from them. Machine learning contains large amount of data therefore it can be employed as an efficient support system in the health diagnosis. More time and resources are consumed for analyzing a huge amount of data. Also, altogether the structures existing in the dataset do not support in to solve given problem. Hence, an effective feature selection algorithm can be used for contributing additional in diagnosis of the diseases for finding the more important features. [5]

Literature Review

To tackle the main problem of heart disease prediction system accurately extensive research has been carried out worldwide in last decade. Different machine learning algorithms for prediction of heart disease were examined and they are summarized in this paper. Although some acceptable levels of accuracy have been reached in the presented work there is some drawbacks and challenges leaving scope for research's to still achieve better performance.

Noura Ajam et al. [7] employed Artificial Neural network for diagnosing the Heart Disease with greater accuracy. The algorithm used was Feed forward Back Propagation learning for testing the capability to diagnose heart related disease. 88% classification accuracy was reported by taking into account an appropriate activation function for hidden layer and 20 neurons in hidden layer.

Sairabi H. Mujawar et al. [8] used Naïve Bayes algorithm improved k-mean for Diagnosis of disease related to heart. Cleveland Heart Disease Database data set is for this work. Predictor has achieved 93 % accuracy in forecasting disease related to heart and 89% accuracy for patient who don't have any heart related disease.

Sonam Nikhar et al. [9] author has introduced heart disease prediction system with Naïve Bayes classifier and decision tree classifier. The accuracy of decision tree has reported better in comparison with naïve Bayes classifier. The enhancement in the performance of the Naïve Bayesian classifier by eliminating unrelated characteristics from the dataset and picking characteristics which are furthermost edifying for the classification was reported.

Purshottam et al. [19] was performed research using data mining for efficient Heart Disease Forecast System. By employing 10 fold method, the system has been trained and tested and achieved 86.3 % accuracy in the phase of testing and 87.3 % in the phase of training.

Singh, Yeshvendra K et al. [10] Cleveland heart disease dataset has been used and using Random Forest algorithms an accuracy of 85.81% is achieved

Seyedamin Pouriyeh et al. [11] reported related research for finding and comparing the accuracy of dissimilar data mining classification arrangements so as the accurate Machine Learning Techniques can be employed for the forecast of heart disease. Accuracy obtained

The Ciência & Engenharia - Science & Engineering Journal ISSN: 0103-944X Volume 11 Issue 1, 2023 pp: 842 – 853 are Decision Tree: 77.55%, Na[°]ive Bayes: 83.49%, SCRL: 69.96%, SVM :84.15%. It was also reported that the SVM method was more accurate in comparison with other schemes.

Senthil Kumar Mohan et al, [1] author projected a method for finding noteworthy structures by employing machine learning techniques so as to improve the accuracy in cardiovascular disease forecast. The hybrid random forest with a linear model (HRFLM) was developed with 88.7% accuracy.

Liaquat Ali el al. [12] author employed a system which stacks two support vector machine (SVM) models for the efficient forecast of HF. The proposed hybrid grid search algorithm (HGSA) is proficient of augmenting the two models concurrently. The different metrics evaluated are sensitivity, accuracy, MCC (Matthews correlation coefficient), specificity, area under curve (AUC) and ROC charts. The proposed method given the enhancement in the performance by 3.3% of a conventional SVM model. Accuracies achieved are in the range of 57.85%–91.83%.

Senthilkumar Mohan et al. [1] proposed hybrid HRFLM approach for uniting of Linear Method (LM) and Random Forest (RF). HRFLM attained 88.7% accuracy in the forecast of heart related disease.

Aut	Y	Purp	Description	Paramet
hor	e	ose		ers
	a			
	r			
Nou	2	Heart	Technique	Achieved
ra	0	Disea	employed: ANN	paramete
Aja	1	ses	(Artificial neural	r: Mean
m	5	Diagn	network)	Square
[7]		oses	Algorithm used:	Error
		using	Feed forward	(MSE) =
		Artifi	Back Propagation	0.1071
		cial	learning	Regressi
		Neura	Dataset	on =
		1	employed:	0.73166
		Netw	Cleveland Heart	Accuracy
		ork	Disease Database	= 88%
			taken from UCI	
			machine learning	
			Repository.	
Sair	2	Predic	Naïve Bayes	93 %
abi	0	tion of	algorithm	accuracy
H.	1	Heart	modified k-mean	in
Muj	5	relate	for Diagnosis of	forecasti

TABLE I. SUMMARY OF LITERATURE REVIEW

awa		d	heart disease	ng a
r[8]		Disea	predicted.	heart
		se		related
		emplo		disease
		ying		and 89%
		Modif		accuracy
		ied k-		for
		means		patient
		and		who
		by		doesn't
		using		have a
		Naive		heart
		Bayes		disease.
Son	2	Predic	Techniques used:	Using
am	0	tion	Decision tree and	Decision
Nik	1	of	Naïve Bayes	tree
har	6	Heart	Classifier	techniqu
and		Disea		e
A.M		se	Dataset used: UCI	accuracy
		Using	MachineLearning	is
Kar		Machi	Dataset	increased
andi		ne		as
kar		Learni		compare
[9]		ng		d
		Algori		naïve
		thms		Bayes
				classifier
Puru	2	Effici	Techniques used:	Attained
shot	0	ent	Decision tree	86.3 %
tam	1	Heart	algorithm is used	accuracy
[19]	6	Disea	for Classification	in phase
		se	rules generation	of testing
		Predic	V.A. Therapeutic	and 87.3
		tion	Center created	% in
		Syste	Database.	phase of
		m		training
Sey	2	То	Techniques used:	Accuracy
eda	0	find	: Na ["] ıve Bayes	Decision
min	1	and	(NB), Decision	Tree:
Pour	7	comp	Tree (DT),	77.55%
iyeh		are	Multilayer	Naïıve
,		the	Perceptron	Bayes:
Sara		accura	(MLP), Single	83.49

Vah		cy of	Conjunctive Rule	SCRL:
id,		differ	Learner (SCRL),	69.96%
Gio		ent	K-Nearest	SVM
van		data	Neighbor (K-	:84.15%.
na		minin	NN), Support	Precision
San		g	Vector Machine	Recall F-
nino		classif	(SVM) and	Measure
Ť		icatio	Radial Basis	ROC
[11]		n	Function (RBF)	Area
		metho	Dataset used:	Accuracy
		ds, to	Cleveland Heart	
		use	Disease data set	
		Machi	taken from the	
		ne	University of	
		Learni	California, Irvine	
		ng	(UCI) learning	
		Techn	data set repository	
		ique		
		for the		
		predic		
		tion of		
		heart		
		diseas		
		e.		
Sing	2	Heart	Random forest	Accuracy
h,Y	0	Disea	algorithm	85.81%
eshv	1	se		
endr	7	Predic		
a K.		tion		
[10]		Syste		
		m		
		Using		
		Rando		
		m		
		Forest		
Sent	2	Objec	Combining the	Accuracy
hilk	0	tive is	characteristics of	88.7%.
uma	1	to find	Random Forest	
r	9	signifi	(RF) and Linear	
Moh		cant	Method (LM).	
an		featur		
[1]		es by	Data set	
		applyi	Cleveland dataset	

		ng	collected from a	L
		ML	UCI machine	:
		techni	learning	
		ques	repository	
		so as		
		to		
		increa		
		se the		
		accura		
		cy in		
		the		
		predic		
		tion of		
		cardio		
		vascul		
		ar		
		diseas		
		e		
Liaq	2	An	Proposed a	Parameter
at	0	Optim	hybrid grid	S
Ali	1	ized	search algorithm	measured:
et al	9	SVM	(HGSA) which	Accuracy,
[20]		Exper	is able of	sensitivity,
		t	augmenting the	specificity,
		syste	SVM model 1	MCC
		m is	and SVM model	(Matthews
		emplo	2	correlation
		yed		coefficient
		for the), ROC
		foreca	Data set	charts, and
		st of	:Cleveland	area under
		Heart	dataset collected	curve
		Failur	from a UCI	(AUC)
		e	machine	The
			learning	proposed
			repository	method
				given
				improvem
				ent in the
				performan
				ce by
				3.3% of a
				conservati

				ve SVM
				model.
				Accuracies
				achieved
				in the
				range of
				57.85%-
				91.83%.
Sant	2	Predic	Supervised	Accuracy
hana	0	tion of	Algorithms	of decision
Kris	1	Heart	used: Naive	tree and
hna	9	Disea	Bayes and	Naive
n. J		se	Decision tree	Bayes
et		Using	Data set:	algorithm
al[2		Machi	Cleveland	mare is
3]		ne	dataset collected	91% &
		Learni	from a UCI	87%
		ng	machine	respectivel
		Algori	learning	у
		thms	repository	
Sent	2	Effect	Hybrid random	Accuracy
hilk	0	ive	forest with a	= 88.7%
uma	1	Heart	linear model	
r	9	Disea	(HRFLM).	
Moh		se	Data set:: UCI	
an ,		Predic	dataset for heart	
Cha		tion	disease.	
ndra		Using		
sega		Hybri		
r		d		
Thir		Machi		
uma		ne		
lai ,		Learni		
And		ng		
Gau		Techn		
tam		iques		
Sriv				
asta				
va[1				
]				
Kal		Heart	Algorithm used:	Random
pana	2	Disea	Random Forest	Forest
&	0	se		

Sne	2	Diagn	algorithm
hith	1	osis	provided
a[14		Syste	86%
]		m	accuracy
		Using	
		Machi	
		ne	
		Learni	
		ng	

Conclusion

Despite the scrupulous efforts to develop a fully automatic Automated Heart Disease Diagnosis System using Machine Learning Algorithm, it has limited success in comparison with the performance and accurate results. One of the possible areas of further expansion for improved performance includes adequate utilization of the expert knowledge and experience to develop decision making ability. Enormous efforts to develop Automated Heart Disease Diagnosis System using Machine Learning Algorithm have been made so far. This is an attempt to completely circumvent or minimize the human effort in the process of heart disease diagnosis. The system must therefore have both, expert knowledge and experience of the cardiologist from the clinical acceptability perspective. This makes the development of Automated Heart Disease Diagnosis System difficult and challenging and therefore demands additional research.

In this paper a comparative study of various machine learning algorithms which are employed for heart related disease forecast. Great efforts to develop heart related disease forecast employing Machine learning have been made so far. However, the limitations of existing methods are parameters like classification accuracy, sensitivity and prediction results are to be improved. Above mentioned ML algorithms have performed very well still there is scope that a combination of some of these techniques can help in removing the drawback of individual methods of heart disease diagnosis

Based on the above review, it can be concluded that machine learning approach can be used more effectively to predict heart related diseases. An improved system will be developed which can be employed for the selection of appropriate treatment methods for a heart disease diagnosis.

References

- Senthilkumar Mohan, Chandrasegar Thirumalai1, And Gautam Srivastava, "Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques" Volume 7, October 2019, Pages 81542-81554.
- [2] Yuvraj Nikhate,M. V. Jonnalagedda, "SURVEY ON HEART DISEASE PREDICTION USING MACHINE LEARNING", IJCRT, Volume 8, Issue 8 August 2020 | ISSN: 2320-2882, 1600–1606.

- [3] Animesh Hazra, Subrata Kumar Mandal, Amit Gupta, Arkomita Mukherjee ,Asmita Mukherjee, "Heart Disease Diagnosis and Prediction Using Machine Learning and Data Mining Techniques: A Review", Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 7 (2017) pp. 2137-2159
- [4] CVD Details from WHO report. https://www.who.int/en/news room/factsheets/detail/cardiovascular-diseases-(cvds)
- [5] J. Vijayashreea, H. Parveen Sultanaa, "A Machine Learning Framework for Feature Selection in Heart Disease Classification Using Improved Particle Swarm Optimization with Support Vector Machine Classifier", ISSN 0361-7688, Programming and Computer Software, 2018, Vol. 44, No. 6, pp. 388–397.
- [6] Mangesh Limbitote, Dnyaneshwari Mahajan, Kedar Damkondwar, Pushkar Patil, "A Survey on Prediction Techniques of Heart Disease using Machine Learning" International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181, Vol. 9 Issue 06, June-2020,450-453.
- [7]Noura Ajam, 2015, "Heart Diseases Diagnoses Using Artificial Neural Network", Network And Complex Systems, ISSN: 2224-610X (Paper), ISSN: 2225-0603(Online), Vol.5, No.4,pp. 7-11.
- [8] Sairabi H. Mujawar, and P. R. Devale, October 2015, "Prediction of Heart Disease using Modified k-means and by using Naive Bayes", International Journal of Innovative Research in Computer and Communication Engineering(An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 10, pp. 10265-10273.
- [9] Sonam Nikhar, A.M. Karandikar" Prediction of Heart Disease Using Machine Learning Algorithms" International Journal of Advanced Engineering, Management and Science (IJAEMS) Infogain Publication, [Vol-2, Issue-6, June- 2016].I.S. Jacobs and C.P. Bean, "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. III, G.T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp.271-350.
- [10] Singh, Yeshvendra K., Nikhil Sinha, and Sanjay K. Singh, "Heart Disease Prediction System Using Random Forest", International Conference on Advances in Computing and Data Sciences. Springer, Singapore, 2017
- [11] Seyedamin Pouriyeh, Sara Vahid, Giovanna Sannino, Giuseppe De Pietro, Hamid Arabnia, Juan Gutierrez, "A Comprehensive Investigation and Comparison of Machine Learning Techniques in the Domain of Heart Disease", 22nd IEEE Symposium on Computers and Communication (ISCC 2017), 22nd IEEE Symposium on Computers and Communication (ISCC 2017).
- [12] Aditi Gavhane, Gouthami Kokkula, Isha Pandya, Prof. Kailas Devadkar (PhD)," Prediction of Heart Disease Using Machine Learning", Proceedings of the 2nd International conference on Electronics, Communication and Aerospace Technology (ICECA 2018).IEEE Conference Record # 42487; IEEE Xplore ISBN:978-1-5386-0965-
- [13] A.Lakshmanarao, Y.Swathi, P.Sri Sai Sundareswar," Machine Learning Techniques For Heart Disease Prediction", International Journal Of Scientific & Technology Research Volume 8, Issue 11,November 2019.
- [14] Kalpana, Snehitha," Heart Disease Diagnosis System Using Machine Learning." International Research Journal of Engineering and Technology (IRJET), Volume: 08

- Issue: 04 | Apr 2021.
- [15] H. A. Esfahani and M. Ghazanfari, "Cardiovascular disease detection using a new ensemble classifier," in Proc. IEEE 4th Int. Conf. Knowl.- Based Eng. Innov. (KBEI), Dec. 2017, pp. 1011–1014.
- [16] F. Dammak, L. Baccour, and A. M. Alimi, "The impact of criterion weights techniques in TOPSIS method of multi-criteria decision making in crisp and intuitionistic fuzzy domains," in Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), vol. 9, Aug. 2015, pp. 1– 8.
- [17] R. Das, I. Turkoglu, and A. Sengur, "Effective diagnosis of heart disease through neural networks ensembles," Expert Syst. Appl., vol. 36, no. 4, pp. 7675–7680, May 2009. doi: 10.1016/j.eswa.2008.09.013.
- [18] M. Durairaj and V. Revathi, "Prediction of heart disease using back propagation MLP algorithm," Int. J. Sci. Technol. Res., vol. 4, no. 8, pp. 235–239, 2015. [12] M. Gandhi and S. N. Singh, "Predictions in heart disease using techniques of data mining," in Proc. Int. Conf. Futuristic Trends Comput. Anal. Knowl. Manage. (ABLAZE), Feb. 2015, pp. 520–525.
- [19] Purushottam, Kanak Saxena and Richa Sharma, "Efficient heart disease prediction system." Procedia Computer Science 85 (2016): 962-969.
- [20] Ali, Liaqat, et al, "An optimized stacked support vector machines based expert system for the effective prediction of heart failure." IEEE Access 7 (2019): 54007-54014
- [21] A. Gavhane, G. Kokkula, I. Pandya, and K. Devadkar, "Prediction of heart disease using machine learning," in Proc. 2nd Int. Conf. Electron., Commun. Aerosp. Technol. (ICECA), Mar. 2018, pp. 1275–1278.
- [22] B. S. S. Rathnayakc and G. U. Ganegoda, "Heart diseases prediction with data mining and neural network techniques," in Proc. 3rd Int. Conf. Converg. Technol. (I2CT), Apr. 2018, pp. 1–6.
- [23] Santhana Krishnan. J, Geetha S., "Prediction of Heart Disease Using Machine Learning Algorithms", 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT)
- [24] "Mastering Machine Learning with Python in Six Steps"A practical impementation guide to predictive dada analytics using Python by Manohar Swamynathan., Apress.
- [25] Machine Learning and Data Mining by Igor Kononenko, Matjaz Kukar,
- [26] Reinforcement Learning by Richard S. Sutton, 2012
- [27] Supervised and Unsupervised Pattern Recognition: Feature Extratraction and Computational Intelligence by Evangelia Micheli-Tzanakou, 2000
- [28] http://archive.ics.uci.edu/ml/datasets/Heart+Disease
- [29] Mousami V. Munot," DEVELOPMENT OF COMPUTERIZED SYSTEMS FOR AUTOMATED CHROMOSOME ANALYSIS: CURRENT STATUS AND FUTURE PROSPECTS" International Journal of Advanced Research in Computer Science, Volume 9, No. 1, January-February 2018.