# **Impact of Self-Induced Mutations on Skin Protein**

\* Ms. Sunanda Pandita
School of Computer Science and Engineering, Sandip University Nashik
\*sunanda7723@gmail.com
Pravin Gundalwar
School of Computer Science and Engineering, Sandip University Nashik
gundalwarp@gmail.com

#### Abstract

The human skin is the biggest organ in the body and serves as the body's first line of defence against external aggressions thanks to its strategic placement at the boundary between the interior and exterior. It is becoming more and more obvious that mutations in numerous cutaneous-associated keratin genes cause a variety of genetic skin diseases, each of which is characterised by compromised specific cell-tissue integrity, impairing the skin's capacity to function as a proper barrier and withstand repeated physical trauma. Several other concepts, including identity, similarity, and homology, are frequently (mis)used to describe sequence comparisons. Even though they are frequently used interchangeably, their meanings are very distinct. It is necessary to find the right alignment of two sequences before computing their similarity. The ability to recognise sequence similarity allows us to save countless biological years to apply knowledge of one sequence to other comparable sequences.

Keywords: Sequence, patterns, alignment, identity, similarity, homology

#### Introduction

The structure but not usually the function of a protein can be impacted by changes in the amino acid sequence. A modification at some places, like conserved residues, however, can have an impact on the protein's structure as well as its functionality. This study illustrates how the initial amino acid sequence of a skin protein changes when mutations are introduced at various rates.

#### Subjects and samples

- a) Homo Sapiens- Homo sapiens (Latin for "wise man") is the name given to the human species. Homo sapiens is the sole living member of the genus Homo, which contains multiple extinct species.
- b) Gorilla- Gorillas are giant apes that are herbivorous and spend most of their time on the ground in the tropical forests of equatorial Africa. There are two species of gorillas, the eastern and western, and up to five subspecies within the genus gorilla.
- c) Nomascus leucogenya- (Northern White Cheeked Gibbon) is a species of <u>primates</u> in the family <u>gibbons</u>. They are listed as critically endangered by IUCN and in cites appendix i.

They are native to Asia. They are diurnal herbivores. Individuals can grow to 545 mm. Reproduction is viviparous. They have parental care (female provides care and paternal care).

- d) Pongo abelii- There are three different kinds of orangutans, and one of them is the Sumatran orangutan. Rarer than Bornean orangutans but more prevalent than the recently discovered Tapanuli orangutans, both of which may be found on Sumatra, this species is critically endangered and is located exclusively in the island's northern regions.
- e) Hylobates moloch- The silvery gibbon, or Javan gibbon, is a primate belonging to the genus Hylobatis and subfamily Hylobatidae. It can only be found on the Indonesian island of Java, which is in which it lives in the unspoiled rainforests at elevations of up to 2,450 meters.
- f) Pan troglotytes- Chimpanzees, or chimps as they are more commonly known, are a great ape species found across the tropical forests and savannahs of Africa. There are four recognized subspecies and a possible fifth.
- g) Rhinopethicus roxallana- Snub-nosed monkeys are a group of Old World monkeys and make up the entirety of the genus *Rhinopithecus*. The genus is rare and not fully researched. These monkeys are named for the short stump of a nose on their round faces, with nostrils arranged forward. They have relatively multicolored and long fur, particularly at the shoulders and backs.
- h) Rhinopethicus bieti- The black-and-white snub-nosed monkey (*Rhinopithecus bieti*), also known as the Yunnan snub-nosed monkey, is a large black and white primate that lives only in the southern Chinese province of Yunnan, where it is known to the locals as the Yunnan golden hair monkey. It is threatened by habitat loss, and is considered an endangered species. With their unique adaptations to their environment, these monkeys thrive at extreme altitudes despite the below freezing temperatures and thin air.<sup>[</sup>
- Macaca fascicularis- The crab-eating macaque is a species of cercopithecine primate found in Southeast Asia. It is additionally referred to as the long-tailed macaque or the cynomolgus monkey in research settings. The crab-eating macaque, a type of macaque, has coexisted with humans for a very long time.
- j) Macaca mulatta- One kind of Old World monkey is the rhesus macaque, more often known as the rhesus monkey. Six to nine recognized subspecies exist, with one group originating in China and the other in India.

#### **Simulation Tool**

Computational biologists employ numerous techniques, including similarity searches and sequence comparison. This method is commonly used by different kinds of biologists. The most popular tool for this is BLAST (basic local alignment search technique), which compares pairs of sequences to look for local similarities. The original article that developed

BLAST has received more than 12,000 citations in the 11 years after it was published, and using BLAST has become an essential technique in biology. Understanding how it functions, what it accomplishes, how to use it effectively, and how to evaluate previously published results are essential. Among the several current iterations of the BLAST algorithm, NCBI BLAST and WU-BLAST are the most recent. The National Centre for Biotechnology Information (NCBI) offers NCBI BLAST, whereas Washington University in St. Louis offers WU-BLAST. The principles, procedures, applications, and potential concerns of the NCBI version of BLAST are all discussed.

### **Performance parameter**

- **Maximum Score** The Maximum Score represents the highest possible alignment score (bit-score) that may be achieved between the query sequence & the database segments. It has a relationship with the e-value that is inversely proportional.
- **Total Score** The term "Total Score" refers to the sum of the alignment scores for all of the sequences contained in the shared database.
- **Percent Query Coverage-** The term "Percent Query Coverage" refers to the proportion of the total length of the query that may be located in the segments that have been aligned.
- **E-value-** The e-value provides a measure of the likelihood that the similarity in sequences is not just the result of random chance.
- **Percent Identity-** The percentage of identity reveals how closely the query sequence is related to the sequences that have been aligned.

## **Experimental Findings**

ORIGINAL AA SEQUENCE OF HUMAN SKIN PROTEIN

MCDQQKQPQFPPSCVKGSGLGAGQGSNGASVKCPVPCQTQTVCV

TGPAPCPTQTYVKYQVPCQTQTYVKCPAPCQRTYVKYPTPCQTYVKCPAPCQTTYV KC

PTPCQTYVKCPAPCQMTYIKSPAPCQTQTCYVQGASPCQSYYVQAPASGSTSQYCVT D

PCSAPCSTSYCCLAPRTFGVSPLRRWIQRPQNCNTGSSGCCENSGSSGCCGSGGCGCS CGCGSSGCCCLGIIPMRSRGPACCDHEDDCCC

| pp: 2830 – 2848                                                                                                                                                                                                                         |                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| M FINDINGS - sunanda7723@gmai 🗴 😕 Protein BLAST: search protein dai 🗙 🕂                                                                                                                                                                 | ∨ – 0 ×                                                 |
| ← → C                                                                                                                                                                                                                                   | G 🖻 🖈 😈 🛸 🖬 🚳 🗄                                         |
| ■ An official website of the United States government Here's how you know.~                                                                                                                                                             |                                                         |
| NIH National Library of Medicine                                                                                                                                                                                                        | Log in                                                  |
| BLAST® » blastp suite Home Recent Results                                                                                                                                                                                               | Saved Strategies Help                                   |
| blastn blastx tblastn tblastx                                                                                                                                                                                                           |                                                         |
|                                                                                                                                                                                                                                         | Reset page Bookmark                                     |
| Choose Search Set Databases  Standard databases (nr etc.):  Try experimental clustered nr database For more info see What is clustered nr?  Compare Select to compare standard and experimental database ?  https://www.ncbinlm.min.gov | Eeedback                                                |
| A 37C 🔡 🛃 Q Search 🛛 😼 📮 😋 💇 🖬 🖏 🖏 🦉 🖉 🛆                                                                                                                                                                                                | 、 C ENG 奈 (小) ■ 5:02 PM (1)<br>IN 奈 (小) ■ 5/16/2023 (1) |

Fig 1 BLAST Window showing Original AMINO ACID Sequence of skin protein pasted in the text box

| M FINDINGS - sunanda7723 | @gmail × 😒 NCBI Blast:Prote | in Sequence 🗙 🚽         | F)               | v - 0 X                                                                        |
|--------------------------|-----------------------------|-------------------------|------------------|--------------------------------------------------------------------------------|
| ← → C 🔒 blast.r          | ncbi.nlm.nih.gov/Blast.cgi  |                         |                  | G 🖻 🖈 🖬 😡 🗄                                                                    |
| BLAST <sup>®</sup> » bla | astp suite » results for I  | RID-66UF7UBF016         | ;                | Home Recent Results Saved Strategies Help                                      |
| < Edit Search            | Save Search Sear            | rch Summary 🗸           |                  | How to read this report? • BLAST Help Videos SBack to Traditional Results Page |
| Job Title                | Protein Sequence            |                         |                  | Filter Results                                                                 |
| RID                      | 66UF7UBF016 Search e        | xpires on 05-17 19:32 p | m Download All   | <b>↓</b> ▼                                                                     |
| Program                  | BLASTP ? Citation >         | •                       |                  | Organism only top 20 will appear exclude                                       |
| Database                 | nr See details ¥            |                         |                  | Type common name, binomial, taxid or group name                                |
| Query ID                 | Icl Query_70136             |                         |                  | + Add organism                                                                 |
| Description              | unnamed protein produc      | :t                      |                  | Percent Identity E value Query Coverage                                        |
| Molecule type            | amino acid                  |                         |                  | to to to                                                                       |
| Query Length             | 250                         |                         |                  |                                                                                |
| Other reports            | Distance tree of results    | Multiple alignment      | t MSA viewer     | e Filter Reset                                                                 |
|                          | Cor                         | mpare these res         | ults against the | e new Clustered nr database 🚱 BLAST X                                          |
| Descriptions             | Graphic Summary             | Alignments              | Taxonomy         | ack                                                                            |
| Sequences p              | producing significant a     | lignments               |                  | Download Y Select columns Y Show 100 Y 🚱                                       |
| select all               | 100 sequences selected      |                         |                  | GenPept Graphics Distance tree of results Multiple alignment MSA Viewer        |
|                          |                             |                         |                  | Max Total Query E Per. Acc.                                                    |
| 37°C<br>Mostly cloudy    |                             | Q Search                | 🚅 🖸 🗩            | ) 📫 📜 💽 🧐 🗰 🖏 📲 🧮 💋 🛛 ^ 🔂 🖬 🖘 5/16/2023 🔮                                      |

Fig 2. Output 1 awaiting result

| M FINDINGS                      | - sunanda7723@gma × S NCBI BlastProtein Sequence × +                          |                              |       |       |       |        |         |     | × –            | Ō              | ×          |
|---------------------------------|-------------------------------------------------------------------------------|------------------------------|-------|-------|-------|--------|---------|-----|----------------|----------------|------------|
| $\leftrightarrow \rightarrow c$ | last.ncbi.nlm.nih.gov/Blast.cgi                                               |                              |       |       |       |        | G       | Ê   | * 🗉 🛊          |                | <b>5</b> : |
|                                 | Description                                                                   | Scientific Name              | Score | Score | Cover | value  | Ident   | Len | Accession      |                | *          |
|                                 | skin-specific protein 32 [Homo sapiens]                                       | Homo sapiens                 | 473   | 473   | 100%  | 1e-167 | 100.00% | 250 | NP_001019850.1 | L              |            |
|                                 | hypothetical protein KI723_012034 [Homo sapiens]                              | Homo sapiens                 | 472   | 472   | 100%  | 3e-167 | 99.60%  | 250 | KAI2519178.1   |                |            |
|                                 | skin-specific protein 32 [Gorilla gorilla gorilla]                            | Gorilla gorilla gorilla      | 465   | 465   | 100%  | 1e-164 | 98.40%  | 250 | XP_004026743.1 | 1              |            |
|                                 | skin-specific protein 32 [Pan troglodytes]                                    | Pan troglodytes              | 462   | 462   | 100%  | 3e-163 | 98.00%  | 250 | XP_003308524.1 | 1              | - 1        |
|                                 | skin-specific protein 32 [Nomascus leucogenys]                                | Nomascus leucogenys          | 444   | 444   | 100%  | 2e-156 | 94.80%  | 246 | XP_003259317.1 | 1              | - 1        |
|                                 | skin-specific protein 32 [Macaca mulatta]                                     | Macaca mulatta               | 443   | 443   | 100%  | 8e-156 | 93.41%  | 258 | XP_002801835.2 | 2              |            |
|                                 | skin-specific protein 32 [Hylobates moloch]                                   | Hylobates moloch             | 443   | 443   | 100%  | 1e-155 | 94.80%  | 246 | XP_032010482.1 | L              |            |
|                                 | skin-specific protein 32 [Pongo abelii]                                       | <u>Pongo abelii</u>          | 380   | 380   | 98%   | 1e-130 | 95.92%  | 250 | XP_002810238.1 | 1              |            |
|                                 | skin-specific protein 32 [Theropithecus gelada]                               | Theropithecus gelada         | 372   | 372   | 98%   | 9e-128 | 94.69%  | 250 | XP_025253342.1 | L              |            |
|                                 | skin-specific protein 32 [Chlorocebus sabaeus]                                | Chlorocebus sabaeus          | 370   | 370   | 98%   | 6e-127 | 94.35%  | 253 | XP_037853488.1 | L              |            |
|                                 | PREDICTED: skin-specific protein 32 isoform X1 [Colobus angolensis palliatus] | Colobus angolensis palliatus | 370   | 370   | 98%   | 6e-127 | 94.76%  | 253 | XP_011793318.1 |                |            |
|                                 | skin-specific protein 32 [Rhinopithecus roxellana]                            | Rhinopithecus roxellana      | 370   | 370   | 98%   | 9e-127 | 94.29%  | 250 | XP_030792113.1 | -              |            |
|                                 | PREDICTED: skin-specific protein 32 [Rhinopithecus bieti]                     | Rhinopithecus bieti          | 369   | 369   | 98%   | 1e-126 | 94.29%  | 250 | XP_017713183.1 | L              |            |
|                                 | PREDICTED: skin-specific protein 32 [Mandrillus leucophaeus]                  | Mandrillus leucophaeus       | 368   | 368   | 98%   | 6e-126 | 93.95%  | 253 | XP_011836309.1 |                |            |
|                                 | hypothetical protein EGK_01300 [Macaca mulatta]                               | Macaca mulatta               | 367   | 367   | 96%   | 2e-125 | 90.32%  | 258 | EHH15237.1     |                |            |
|                                 | hypothetical protein EGM_19948 [Macaca fascicularis]                          | Macaca fascicularis          | 362   | 362   | 96%   | 9e-124 | 89.92%  | 258 | EHH61820.1     |                | *          |
|                                 | skin-specific protein 32 [Trachypithecus francoisi]                           | Trachypithecus francoisi     | 360   | 360   | 98%   | 1e-122 | 87.59%  | 271 | XP_033051639.1 | 1              | lbac       |
|                                 | skin-specific protein 32 [Macaca fascicularis]                                | Macaca fascicularis          | 358   | 358   | 96%   | 9e-122 | 84.21%  | 276 | XP_045219182.1 | 1              | Feed       |
|                                 | skin-specific protein 32 [Piliocolobus tephrosceles]                          | Piliocolobus tephrosceles    | 347   | 347   | 98%   | 3e-118 | 91.84%  | 239 | XP_023070150.2 | 2              |            |
|                                 | skin-specific protein 32 [Aotus nancymaae]                                    | Aotus nancymaae              | 347   | 347   | 96%   | 7e-118 | 90.46%  | 251 | XP_012318168.1 | 1              |            |
| https://www.ncbi                | nlm.nih.gov/Taxonomy/Browser/www.tax.cgi?id=9568                              | Dania anukia                 | 212   | 212   | 0.00/ | 2. 110 | 00 200/ | 250 | VD 034500500 4 |                | -          |
| Mostly c                        | loudy Q Search                                                                | D 🕸 📮 😋 💆 🔳                  | ×     | w_    |       | 2      | ^ Ç     | EN  | େ ବ୍ଦା) 🖿      | 5:03<br>5/16/2 | PM 3       |

Fig 3. Output of original sequence

# Origin

al

| Sr.<br>No. | Output: Scientific<br>name | Max<br>Score | Total<br>Score | Query<br>Cover | E-Value       | Percentage<br>Identity |
|------------|----------------------------|--------------|----------------|----------------|---------------|------------------------|
| 1          | Homo Sapiens               | 473          | 473            | 100%           | 1.00E-<br>167 | 100%                   |
| 2          | Gorilla gorilla            | 465          | 465            | 100%           | 1.00E-<br>164 | 99.60%                 |
| 3          | Pan troglotytes            | 462          | 462            | 100%           | 3.00E-<br>163 | 98%                    |
| 4          | Nomascus<br>Leucogenya     | 444          | 444            | 100%           | 2.00E-<br>156 | 94.80%                 |
| 5          | Macaca mulatta             | 443          | 443            | 100%           | 8.00E-<br>156 | 93.41%                 |
| 6          | Hylobates moloch           | 443          | 443            | 100%           | 1.00E-<br>155 | 94.80%                 |
| 7          | Pongo abelii               | 380          | 380            | 98%            | 1.00E-        | 95.92%                 |

https://seer-ufu-br.online

|    |                            |     |     |     | 130           |        |
|----|----------------------------|-----|-----|-----|---------------|--------|
| 8  | Rhinopithecus<br>roxellana | 370 | 370 | 98% | 1.90E-<br>126 | 94.29% |
| 9  | Rhinopithecus bieti        | 369 | 369 | 98% | 1.00E-<br>126 | 94.29% |
| 10 | Macaca<br>fascicularis     | 358 | 358 | 96% | 9.00E-<br>124 | 89.92% |

MUTATION 1 at 14 C with A at 25 G with K at 32 K with G

MCDQQKQPQFPPSAVKGSGLGAGQKSNGASVGCPVPCQTQTVCV

TGPAPCPTQTYVKYQVPCQTQTYVKCPAPCQRTYVKYPTPCQTYVKCPAPCQTTYV KC

PTPCQTYVKCPAPCQMTYIKSPAPCQTQTCYVQGASPCQSYYVQAPASGSTSQYCVT D

PCSAPCSTSYCCLAPRTFGVSPLRRWIQRPQNCNTGSSGCCENSGSSGCCGSGGCGCS

CGCGSSGCCCLGIIPMRSRGPACCDHEDDCCC

| 📉 FINDINGS - sunanda7723@gmail 🗙 😫 Protein BLAST: search protein dal 🗙 🕐 (2) WhatsApp 🛛 🗙 🕂                                                                    | ~ — @ ×                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| ← → C                                                                                                                                                          | 🖻 🖈 👅 🖨 🖪 💈 :                                         |
| NIH National Library of Medicine<br>National Center for Biotechnology Information                                                                              | Log in                                                |
| BLAST® » blastp suite Home Recent Results                                                                                                                      | Saved Strategies Help                                 |
| Standard Protein BLAST                                                                                                                                         |                                                       |
| blastn blastz blastx tblastn tblastx                                                                                                                           |                                                       |
| BLASTP programs search protein databases using a protein query. more                                                                                           | Reset page Bookmark                                   |
| Enter Query Sequence                                                                                                                                           |                                                       |
| Enter accession number(s), gi(s), or FASTA sequence(s) 😧 Clear Query subrange 😧                                                                                |                                                       |
| MCDQQKQPQFPPSAKGSGLGAGQKSNGASVGCPVPCQTQTVCV<br>TGPAPCPTQTYVKQVPCQTQTYVKCPAPCQTYVKCPAPC<br>QTTYVKC<br>PTPCQTYVKCPAPCQMTYIKSPAPCQTQTCYVQGASPCQSYYVQAPASGST<br>To |                                                       |
| Or, upload file Chanse File No file chasen                                                                                                                     |                                                       |
| Job Title                                                                                                                                                      |                                                       |
| Align two or more sequences ?                                                                                                                                  |                                                       |
| Choose Search Set                                                                                                                                              |                                                       |
| Databases Standard databases (nr etc.): New O Experimental databases For more info see What is clustered nr?                                                   |                                                       |
| Compare Select to compare standard and experimental database ?                                                                                                 |                                                       |
| Standard                                                                                                                                                       |                                                       |
| Database Non-rodundent orginin conjunces (nd)                                                                                                                  |                                                       |
| Cloudy                                                                                                                                                         | へ 🤂 ENG 奈 (小) 匝 8:52 PM (3<br>IN 奈 (小) 匝 5/16/2023 (3 |

Fig 4 MUTATION 1 BLAST QUERY SENT

| <ul> <li>✓ FINDINGS - sunanda772:</li> <li>← → C</li></ul> | a@gma X S NCBI Blast:Protein Sequence X 2 (2) WhatsApp  |            | x   + · · · · · · × · · · · × · · · · × · · · · · × · · · · · · · · · · · · · · · · · · · · |
|------------------------------------------------------------|---------------------------------------------------------|------------|---------------------------------------------------------------------------------------------|
| BLAST <sup>®</sup> » bl                                    | nal Center for Biotechnology Information                |            | Home Recent Results Saved Strategies Help                                                   |
| < Edit Search                                              | Save Search Search Summary ~                            | <b>0</b> I | How to read this report?  BLAST Help Videos DBack to Traditional Results Page               |
| Job Title                                                  | Protein Sequence                                        |            | Filter Results                                                                              |
| RID                                                        | 677S3J3C016 Search expires on 05-17 23:19 pm Download A | <u> </u>   |                                                                                             |
| Program                                                    | BLASTP 😧 Citation 🗸                                     |            | Organism only top 20 will appear exclude                                                    |
| Database                                                   | nr <u>See details</u> ✓                                 |            | Type common name, binomial, taxid or group name                                             |
| Query ID                                                   | Icl Query_38423                                         |            | + Add organism                                                                              |
| Description                                                | unnamed protein product                                 |            | Percent Identity E value Query Coverage                                                     |
| Molecule type                                              | amino acid                                              |            | to to to                                                                                    |
| Query Length                                               | 250                                                     |            |                                                                                             |
| Other reports                                              | Distance tree of results Multiple alignment MSA viewer  | 8          | Filter Reset                                                                                |
|                                                            | Compare these results against                           | the nev    | ew Clustered nr database 🕢 BLAST                                                            |
| Descriptions                                               | Graphic Summary Alignments Taxonomy                     |            | reedbac.                                                                                    |
| Sequences p                                                | producing significant alignments                        |            | Download Y Select columns Y Show 100 Y 😧                                                    |
| select all                                                 | 100 sequences selected                                  |            | GenPept Graphics Distance tree of results Multiple alignment MSA Viewer                     |
| Cloudy                                                     | Q Search 💋                                              | 9 4        | 👪 🛄 💽 🧐 🛅 🖏 📲 🧮 💋 🔹 🤅 thig 🕫 (1) 🗈 8:52 PM 🚱                                                |

Fig 5 Mutation 1 output 1 result awaited

| M FINDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S - sunanda7723@gmail 🗙 😣 NCBI Blast:Protein Sequence 🛛 🗙 🙆 (2) WhatsApp      | ×   +                        |              |                |                |            |               |             | ~               | -             | 0                  | ×                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------|--------------|----------------|----------------|------------|---------------|-------------|-----------------|---------------|--------------------|--------------------|
| $\leftrightarrow$ $\rightarrow$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l blast.ncbi.nlm.nih.gov/Blast.cgi                                            |                              |              |                |                |            |               | Ê           | ☆ <b>U</b>      | *             | ] 🖸                | ) E                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Description                                                                   | Scientific Name              | Max<br>Score | Total<br>Score | Query<br>Cover | E<br>value | Per.<br>Ident | Acc.<br>Len | Acces           | sion          |                    | -                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | skin-specific protein 32 [Homo sapiens]                                       | Homo sapiens                 | 466          | 466            | 100%           | 6e-165     | 98.80%        | 250         | NP_00101        | <u>9850.1</u> |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hypothetical protein KI723_012034 [Homo sapiens]                              | Homo sapiens                 | 465          | 465            | 100%           | 1e-164     | 98.40%        | 250         | KAI25191        | <u>78.1</u>   |                    |                    |
| Image: Second | skin-specific protein 32.[Gorilla.gorilla.gorilla]                            | Gorilla gorilla gorilla      | 458          | 458            | 100%           | 8e-162     | 97.20%        | 250         | <u>XP_00402</u> | 6743.1        |                    | - 1                |
| Image: | skin-specific protein 32 [Pan troglodytes]                                    | Pan troglodytes              | 455          | 455            | 100%           | 2e-160     | 96.80%        | 250         | <u>XP_00330</u> | 8524.1        |                    | - 1                |
| Image: Second | skin-specific protein 32 [Pongo abelii]                                       | Pongo abelii                 | 372          | 372            | 98%            | 1e-127     | 94.69%        | 250         | XP_00281        | 0238.1        |                    | - 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | skin-specific protein 32 [Nomascus leucogenys]                                | Nomascus leucogenys          | 372          | 372            | 96%            | 2e-127     | 90.42%        | 246         | <u>XP_00325</u> | <u>9317.1</u> |                    | - 1                |
| Image: | skin-specific protein 32.[Hylobates moloch]                                   | Hylobates moloch             | 370          | 370            | 96%            | 4e-127     | 90.42%        | 246         | <u>XP_03201</u> | 0482.1        |                    |                    |
| Image: | skin-specific protein 32 [Theropithecus gelada]                               | Theropithecus gelada         | 365          | 365            | 98%            | 8e-125     | 93.47%        | 250         | <u>XP_02525</u> | <u>3342.1</u> |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | skin-specific protein 32.[Chlorocebus sabaeus]                                | Chlorocebus sabaeus          | 363          | 363            | 98%            | 4e-124     | 93.15%        | 253         | <u>XP_03785</u> | <u>3488.1</u> |                    |                    |
| Image: A start and a start  | PREDICTED: skin-specific protein 32 isoform X1 [Colobus angolensis palliatus] | Colobus angolensis palliatus | 363          | 363            | 98%            | 5e-124     | 93.55%        | 253         | <u>XP_01179</u> | <u>3318.1</u> |                    |                    |
| Image: A start and a start  | skin-specific protein 32 [Rhinopithecus roxellana]                            | Rhinopithecus roxellana      | 362          | 362            | 98%            | 1e-123     | 93.06%        | 250         | XP_03079        | 2113.1        |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PREDICTED: skin-specific protein 32 [Rhinopithecus bieti]                     | Rhinopithecus bieti          | 362          | 362            | 98%            | 2e-123     | 93.06%        | 250         | <u>XP_01771</u> | <u>3183.1</u> |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PREDICTED: skin-specific protein 32 [Mandrillus leucophaeus]                  | Mandrillus leucophaeus       | 360          | 360            | 98%            | 4e-123     | 92.74%        | 253         | XP_01183        | <u>6309.1</u> |                    |                    |
| Image: A start and a start  | skin-specific protein 32 [Macaca mulatta]                                     | Macaca mulatta               | 360          | 360            | 96%            | 4e-123     | 89.52%        | 258         | XP_00280        | 1835.2        |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hypothetical protein EGK_01300 [Macaca mulatta]                               | Macaca mulatta               | 359          | 359            | 96%            | 2e-122     | 89.11%        | 258         | EHH15237        | 7.1           |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hypothetical protein EGM_19948 [Macaca fascicularis]                          | Macaca fascicularis          | 355          | 355            | 96%            | 8e-121     | 88.71%        | 258         | EHH61820        | <u>).1</u>    |                    | č,                 |
| Image: Second | skin-specific protein 32.[Trachypithecus francoisi]                           | Trachypithecus francoisi     | 353          | 353            | 98%            | 9e-120     | 86.47%        | 271         | XP_03305        | 1639.1        |                    | edba               |
| Image: A start and a start  | skin-specific protein 32 [Macaca fascicularis]                                | Macaca fascicularis          | 351          | 351            | 96%            | 6e-119     | 83.08%        | 276         | <u>XP_04521</u> | <u>9182.1</u> |                    | Fe                 |
| <b>~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | skin-specific protein 32.[Piliocolobus tephrosceles]                          | Piliocolobus tephrosceles    | 340          | 340            | 98%            | 2e-115     | 90.61%        | 239         | <u>XP_02307</u> | 0150.2        |                    | ш                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | skin-specific protein 32.[Aotus nancymaae]                                    | Aotus nancymaae              | 340          | 340            | 96%            | 7e-115     | 89.21%        | 251         | <u>XP_01231</u> | <u>8168.1</u> |                    | -                  |
| Cloudy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q Search 💋                                                                    | D 🕸 🐂 💽 🤨 🖬                  |              |                |                | 8          | ^ (î          | EN          | 5<br>@ (14)     | D,            | 8:52 PM<br>/16/202 | и<br>23 <b>(</b> ) |

Fig 6 Mutation 1 output 2

| Sr.<br>No. | Scientific name     | Max<br>Score | Total<br>Score | Query<br>Cover | E-<br>Value   | Percentage<br>Identity |
|------------|---------------------|--------------|----------------|----------------|---------------|------------------------|
| 1          | Homo Sapiens        | 466          | 466            | 100%           | 6.00E-<br>165 | 98.80%                 |
| 2          | Gorilla gorilla     | 458          | 458            | 100%           | 8.00E-<br>162 | 97.20%                 |
| 3          | Pan troglotytes     | 455          | 455            | 100%           | 2.00E-<br>160 | 96.80%                 |
|            | Nomascus            |              |                |                | 2.00E-        |                        |
| 4          | Leucogenya          | 372          | 372            | 96%            | 127           | 90.42%                 |
| 5          | Macaca mulatta      | 360          | 360            | 96%            | 2.00E-<br>123 | 89.52%                 |
| 6          | Hylobates moloch    | 370          | 370            | 96%            | 4.00E-<br>127 | 90.42%                 |
| 7          | Pongo abelii        | 372          | 372            | 98%            | 1.00E-<br>127 | 94.69%                 |
|            | Rhinopithecus       |              |                |                | 1.00E-        |                        |
| 8          | roxellana           | 362          | 362            | 98%            | 123           | 93.06%                 |
| 9          | Rhinopithecus bieti | 362          | 362            | 98%            | 2.00E-<br>123 | 93.06%                 |
| 10         | Macaca fascicularis | 351          | 351            | 96%            | 6.00E-<br>119 | 83.08%                 |

MUTATION 2 at 5 Q with P at 10 F with T at 31 V with K

MCDQPKQPQTPPSCVKGSGLGAGQGSNGASKKCPVPCQTQTVCV

TGPAPCPTQTYVKYQVPCQTQTYVKCPAPCQRTYVKYPTPCQTYVKCPAPCQTTYV KC

PTPCQTYVKCPAPCQMTYIKSPAPCQTQTCYVQGASPCQSYYVQAPASGSTSQYCVT D

 $\label{eq:pcsapcstsycclaprtfgvsplrrwiqrpqncntgssgccensgssgccgsggcgcs$ 

CGCGSSGCCCLGIIPMRSRGPACCDHEDDCCC 2837

pp: 2830 - 2848 SUN Regulation for UGC listed p: 🗙 😣 Protein BLAST: search protein da 🗙 💽 WhatsApp ← → C ( blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE\_TYPE=BlastSearch&LINK\_LOC=blasth e 🖈 🛡 🗯 🗖 🚳 NIH National Library of Medicine Log in BLAST <sup>®</sup> » blastp suite Home Recent Results Saved Strategies Help Standard Protein BLAST blastn blastp blastx tblastn tblastx BLASTP programs search protein databases using a protein guery, more. Reset page Bookmark Enter Query Sequence Enter accession number(s), gi(s), or FASTA sequence(s) 😮 Clear Query subrange 😮 From То Or, upload file Choose File No file chosen 0 Job Title Enter a descriptive title for your BLAST search 😮 Align two or more sequences 😯 Choose Search Set Databases Try experimental clustered nr database O Standard databases (nr etc.): New O Experimental databases edback For more info see What is clustered nr? Compare Select to compare standard and experimental database ? lh. Standard Database × 8 Non-redundant protein sequences (nr) ^ C ENG ( ↓) ■ 10:56 PM ( 10:56) 29°C Mostly clear 🞿 🗅 🐗 🐂 😋 🤡 📾 🐗 🚆 💆 Q Search

# Fig 7 MUTATION 2 BLAST QUERY SENT



Fig 8 MUTATION 2 OUTPUT 1 RESULT AWAITED

| SUN Regulation for UGC listed p: X 🗧 NCBI Blast:Protein Sequence 🛛 🗙 🜑 WhatsApp | ×   +                          |                              |                        |                        | ~ -              | • ×          |
|---------------------------------------------------------------------------------|--------------------------------|------------------------------|------------------------|------------------------|------------------|--------------|
| ← → C 🔒 blast.ncbi.nlm.nih.gov/Blast.cgi                                        |                                |                              |                        | É                      | ☆ 😇 🏚            | <b>I (</b> ) |
| Select all 100 sequences selected                                               | Geneebr Grabuics               | DISTANCE THE OF              | TUSUIIS IVIU           | mple alignin           | UIII IVISA VIEWE | L            |
| Description                                                                     | Scientific Name                | Max Total C<br>Score Score C | Duery E<br>Cover value | Per. Acc.<br>Ident Len | Accession        |              |
| skin-specific protein 32 [Homo sapiens]                                         | Homo sapiens                   | 465 929                      | 100% 3e-160            | 98.80% 250             | NP_001019850.1   |              |
| hypothetical protein KI723_012034 [Homo sapiens]                                | Homo saplens                   | 464 927                      | 100% 6e-160            | 98.40% 250             | KAI2519178.1     |              |
| skin-specific protein 32 [Gorilla.gorilla.gorilla]                              | <u>Gorilla gorilla gorilla</u> | 457 913                      | 100% 4e-157            | 97.20% 250             | XP_004026743.1   |              |
| skin-specific protein 32 [Pan troglodytes]                                      | Pan troglodytes                | 454 907                      | 100% 6e-156            | 96.80% 250             | XP_003308524.1   |              |
| skin-specific protein 32 [Pongo abelli]                                         | Pongo abelli                   | 371 743                      | 98% 2e-123             | 94.69% 250             | XP_002810238.1   |              |
| skin-specific protein 32 [Nomascus leucogenys]                                  | Nomascus leucogenys            | 370 741                      | 96% 3e-123             | 90.42% 246             | XP_003259317.1   |              |
| skin-specific protein 32 [Hylobates moloch]                                     | Hylobates moloch               | 369 739                      | 96% 9e-123             | 90.42% 246             | XP_032010482.1   |              |
| skin-specific protein 32 [Theropithecus gelada]                                 | Theropithecus gelada           | 364 727                      | 98% 2e-120             | 93.47% 250             | XP_025253342.1   |              |
| skin-specific protein 32 (Rhinopithecus roxellana)                              | Rhinopithecus roxellana        | 362 723                      | 98% 9e-120             | 93.06% 250             | XP_030792113.1   |              |
| skin-specific protein 32.[Chlorocebus sabaeus]                                  | Chlorocebus sabaeus            | 362 724                      | 98% 1e-119             | 93.15% 253             | XP_037853488.1   |              |
| PREDICTED: skin-specific protein 32 isoform X1 [Colobus angolensis palliatus]   | Colobus angolensis palliatus   | 362 723                      | 98% 1e-119             | 93.55% 253             | XP_011793318.1   |              |
| PREDICTED: skin-specific protein 32.[Rhinopithecus bieti]                       | Rhinopithecus bieti            | 361 721                      | 98% 2e-119             | 93.06% 250             | XP_017713183.1   |              |
| PREDICTED: skin-specific protein 32 [Mandrillus leucophaeus]                    | Mandrillus leucophaeus         | 360 719                      | 98% 6e-119             | 92.74% 253             | XP_011836309.1   |              |
| skin-specific protein 32 [Macaca mulatta]                                       | Macaca mulatta                 | 360 719                      | 96% 9e-119             | 89.52% 258             | XP_002801835.2   |              |
| hypothetical protein EGK_01300 [Macaca mulatta]                                 | Macaca mulatta                 | 358 716                      | 96% 4e-118             | 89.11% 258             | EHH15237.1       | č            |
| hypothetical protein EGM_19948 [Macaca fascicularis]                            | Macaca fascicularis            | 353 707                      | 96% 2e-116             | 88.71% 258             | EHH61820.1       | edba         |
| skin-specific protein 32 [Trachypithecus francoisi]                             | Trachypithecus francoisi       | 352 704                      | 98% 1e-115             | 86.47% 271             | XP_033051639.1   | Fee          |
| skin-specific protein 32 (Macaca fascicularis)                                  | Macaca fascicularis            | 350 699                      | 96% 1e-114             | 83.08% 276             | XP_045219182.1   |              |
| skin-specific protein 32 [Pillocolobus tephrosceles]                            | Piliocolobus tephrosceles      | 339 678                      | 98% 5e-111             | 90.61% 239             | XP_023070150.2   |              |
| 2015                                                                            |                                |                              | _                      |                        | 10               | 10:55 PM     |
| Mostly clear Q Search                                                           | ) 🗩 🖷 🚔 🧟 🐼 🖬                  |                              | <b>2</b>               | ^ C II                 | v ~ d» • ;       | /16/2023     |

# Fig 9 MUTATION 2 RESULT 2

#### Mutation 2

| Sr. | Scientific nome     | Max   | Total | Query | E-     | Percentage |
|-----|---------------------|-------|-------|-------|--------|------------|
| No. | Scientific name     | Score | Score | Cover | Value  | Identity   |
|     | Homo Saniens        |       |       |       | 3.00E- |            |
| 1   | rionio Supiens      | 465   | 929   | 100%  | 160    | 98.80%     |
|     |                     |       |       |       | 4.00E- |            |
| 2   | Gorilla gorilla     | 457   | 913   | 100%  | 157    | 97.20%     |
|     | Don tradictutes     |       |       |       | 6.00E- |            |
| 3   | Pan trogiotytes     | 454   | 907   | 100%  | 156    | 96.80%     |
|     | Nomascus            |       |       |       | 3.00E- |            |
| 4   | Leucogenya          | 370   | 741   | 96%   | 123    | 90.42%     |
|     |                     |       |       |       | 9.00E- |            |
| 5   | Macaca mulatta      | 360   | 719   | 96%   | 118    | 89.52%     |
|     | TT 1 1 / 1 1        |       |       |       | 9.00E- |            |
| 6   | Hylobates moloch    | 369   | 739   | 96%   | 123    | 90.42%     |
|     | Danca abalii        |       |       |       | 2.00E- |            |
| 7   | Poligo adelli       | 371   | 743   | 98%   | 123    | 94.69%     |
|     | Rhinopithecus       |       |       |       | 9.00E- |            |
| 8   | roxellana           | 362   | 723   | 98%   | 120    | 93.06%     |
|     |                     |       |       |       | 2.00E- |            |
| 9   | Rhinopithecus bieti | 361   | 721   | 98%   | 119    | 93.06%     |
|     |                     | l     |       |       |        |            |

|    | Magaga fassioularis |     |     |     | 1.00E- |        |
|----|---------------------|-----|-----|-----|--------|--------|
| 10 | Macaca fascicularis | 353 | 707 | 96% | 114    | 88.71% |

MUTATION 3 at position 2 replace C with P at position 11,12 replace P P with T T at position 43 replace C with G

MPDQQKQPQFTTSCVKGSGLGAGQGSNGASVKCPVPCQTQTVGV

TGPAPCPTQTYVKYQVPCQTQTYVKCPAPCQRTYVKYPTPCQTYVKCPAPCQTTYV KC

PTPCQTYVKCPAPCQMTYIKSPAPCQTQTCYVQGASPCQSYYVQAPASGSTSQYCVT D

PCSAPCSTSYCCLAPRTFGVSPLRRWIQRPQNCNTGSSGCCENSGSSGCCGSGGCGCS

CGCGSSGCCCLGIIPMRSRGPACCDHEDDCCC

| 😽 SUN Regulation for UGC listed pi 🗴 😒 Protein BLAST: search protein da 🗴 🔕 WhatsApp Web 🗙 🕇                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | $\vee$   | -      | ð          | × |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|--------|------------|---|
| ← → C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e r         | 7        | *      | <b>I S</b> | : |
| 📕 An official website of the United States government Here's how you know 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |          |        |            |   |
| Nitional Library of Medicine<br>National Center for Biotechnology Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cauad Strat |          | Log in |            |   |
| BLAST ** > blastp suite Home Recent Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Saved Strat | egies    | нер    |            |   |
| blastn blastx tblastn tblastx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |          |        |            |   |
| BLASTP programs search protein databases using a protein query. more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Res         | et page  | ) (Во  | okmark     | 5 |
| Enter Query Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |          |        |            |   |
| SQCVTD<br>PCSAPCSTSYCCLAPRTFGVSPLRRWIQRPQNCNTGSSGCCENSGSSGCC<br>GSGGCGCS<br>CCCCSSSGCCCLGIIPMRSRGPACCDHEDDCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |          |        |            |   |
| Or, upload file     Choose File     No file chosen       Job Title     Enter a descriptive title for your BLAST search ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |          |        |            |   |
| Align two or more sequences 💡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |          |        |            |   |
| Choose Search Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |          |        | 2          | 5 |
| Databases (nr etc.): Correction (nr etc.): C |             |          |        | Eardho     |   |
| Compare Select to compare standard and experimental database ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |          |        |            |   |
| Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ENC.        |          |        | 12:03 PM   | - |
| Sunny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | (in (in) | • 5    | 12.03 PM   | 6 |

Fig 10 MUTATION 3 BLAST QUERY SENT

| ): 2830 <mark>–</mark> 28                                                                                            | 848                                                                                                          |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| SUN Regulation for UGC                                                                                               | Clisted p: 🗙 🔗 NCBI Blast-Protein Sequence 🗙 💽 WhatsApp Web x   + 🗸 🖉 V - O X                                |  |  |  |  |  |  |  |
| $\cdot \rightarrow \mathbf{C}$ $$ blast                                                                              | tnebi.nlm.nih.gov/Blast.cgi 🖻 🖈 🗖 🌖 🗄                                                                        |  |  |  |  |  |  |  |
| NIH Natio                                                                                                            | Log in Log in Log in Log in                                                                                  |  |  |  |  |  |  |  |
| BLAST <sup>©</sup> » bl                                                                                              | lastp suite » results for RID-68XAWN5V016 Home Recent Results Saved Strategies Help                          |  |  |  |  |  |  |  |
| < Edit Search                                                                                                        | Save Search Search Summary V I How to read this report? DBLAST Help Videos DBack to Traditional Results Page |  |  |  |  |  |  |  |
| Job Title                                                                                                            | Protein Sequence Filter Results                                                                              |  |  |  |  |  |  |  |
| RID                                                                                                                  | 68XAWN5V016 Search expires on 05-18 14:34 pm Download All 🗸                                                  |  |  |  |  |  |  |  |
| Program                                                                                                              | BLASTP 😮 Citation 🗸                                                                                          |  |  |  |  |  |  |  |
| Database                                                                                                             | nr See details V Type common name, binomial, taxid or group name                                             |  |  |  |  |  |  |  |
| Query ID                                                                                                             | Icl Query_101480                                                                                             |  |  |  |  |  |  |  |
| Description                                                                                                          | unnamed protein product Percent Identity E value Query Coverage                                              |  |  |  |  |  |  |  |
| Molecule type                                                                                                        | amino acid to to to                                                                                          |  |  |  |  |  |  |  |
| Query Length                                                                                                         |                                                                                                              |  |  |  |  |  |  |  |
| Other reports                                                                                                        | Distance tree of results Multiple alignment MSA viewer 🔮                                                     |  |  |  |  |  |  |  |
|                                                                                                                      | Compare these results against the new Clustered nr database 😧 BLAST                                          |  |  |  |  |  |  |  |
| Descriptions                                                                                                         | s Graphic Summary Alignments Taxonomy                                                                        |  |  |  |  |  |  |  |
| Sequences producing significant alignments Download $\checkmark$ Select columns $\checkmark$ Show 100 $\checkmark$ @ |                                                                                                              |  |  |  |  |  |  |  |
| 34°C<br>Sunny                                                                                                        | 🚦 Q Search 🏒 D 🗰 🎴 Q 🞯 🖬 📲 🖷 🗒 A 🗯 ENG 👳 dØ 🗈 12/04 PM G                                                     |  |  |  |  |  |  |  |

# Fig 11. MUTATION 3 RESULT 1

| 衬 SUN Regul                                   | ation for UGC listed p: 🗙 😒 NCBI Blast:Protein Sequence 🛛 🗙 💽 WhatsApp Web    | ×   +                        |                |                            |                |                    |             | × –                   | ð X        |
|-----------------------------------------------|-------------------------------------------------------------------------------|------------------------------|----------------|----------------------------|----------------|--------------------|-------------|-----------------------|------------|
| $\leftrightarrow \  \   \rightarrow \  \   G$ | last.ncbi.nlm.nih.gov/Blast.cgi                                               |                              |                |                            |                |                    | Ê           | x 🖻 🛊 I               | 3 🚯 E      |
| _                                             |                                                                               |                              |                |                            |                |                    |             |                       | *          |
|                                               | select all 100 sequences selected                                             | GenPept Graphics             | Distance 1     | tree of resul              | t <u>s M</u> u | <u>iltiple ali</u> | <u>gnme</u> | nt MSA Viewei         |            |
|                                               | Description                                                                   | Scientific Name              | Max<br>Score S | Total Query<br>Score Cover | E<br>value     | Per.<br>Ident      | Acc.<br>Len | Accession             |            |
|                                               | skin-specific protein 32 [Homo sapiens]                                       | Homo sapiens                 | 461            | 461 100%                   | 5e-163         | 98.40%             | 250         | NP_001019850.1        |            |
|                                               | hypothetical protein KI723_012034 [Homo sapiens]                              | Homo sapiens                 | 461            | 461 100%                   | 1e-162         | 98.00%             | 250         | KAI2519178.1          |            |
|                                               | skin-specific protein 32 [Gorilla gorilla gorilla]                            | Gorilla gorilla gorilla      | 454            | 454 100%                   | 6e-160         | 96.80%             | 250         | XP_004026743.1        |            |
|                                               | skin-specific protein 32 [Pan troglodytes]                                    | Pan troglodytes              | 450            | 450 100%                   | 2e-158         | 96.40%             | 250         | XP_003308524.1        |            |
|                                               | skin-specific protein 32 [Pongo abelii]                                       | Pongo abelii                 | 367            | 367 97%                    | 2e-125         | 94.65%             | 250         | <u>XP_002810238.1</u> |            |
|                                               | skin-specific protein 32 [Nomascus leucogenys]                                | Nomascus leucogenys          | 366            | 366 96%                    | 2e-125         | 90.00%             | 246         | XP_003259317.1        |            |
|                                               | skin-specific protein 32 [Hylobates moloch]                                   | Hylobates moloch             | 365            | 365 95%                    | 6e-125         | 90.34%             | 246         | XP_032010482.1        |            |
|                                               | skin-specific protein 32 [Theropithecus gelada]                               | Theropithecus gelada         | 364            | 364 98%                    | 2e-124         | 93.47%             | 250         | XP_025253342.1        |            |
|                                               | skin-specific protein 32 [Chlorocebus sabaeus]                                | Chlorocebus sabaeus          | 358            | 358 98%                    | 5e-122         | 92.74%             | 253         | XP_037853488.1        |            |
|                                               | PREDICTED: skin-specific protein 32 isoform X1 [Colobus angolensis palliatus] | Colobus angolensis palliatus | 357            | 357 98%                    | 6e-122         | 93.15%             | 253         | XP_011793318.1        |            |
|                                               | skin-specific protein 32 [Rhinopithecus roxellana]                            | Rhinopithecus roxellana      | 357            | 357 97%                    | 9e-122         | 93.00%             | 250         | <u>XP_030792113.1</u> |            |
|                                               | PREDICTED: skin-specific protein 32 [Rhinopithecus bieti]                     | Rhinopithecus bieti          | 357            | 357 97%                    | 1e-121         | 93.00%             | 250         | <u>XP_017713183.1</u> |            |
|                                               | skin-specific protein 32 [Macaca mulatta]                                     | Macaca mulatta               | 356            | 356 96%                    | 4e-121         | 89.11%             | 258         | XP_002801835.2        |            |
|                                               | PREDICTED: skin-specific protein 32 [Mandrillus leucophaeus]                  | Mandrillus leucophaeus       | 355            | 355 98%                    | 5e-121         | 92.34%             | 253         | XP_011836309.1        | ack        |
|                                               | hypothetical protein EGK_01300 [Macaca mulatta]                               | Macaca mulatta               | 354            | 354 96%                    | 1e-120         | 88.71%             | 258         | EHH15237.1            | edbi       |
|                                               | hypothetical protein EGM_19948 [Macaca fascicularis]                          | Macaca fascicularis          | 350            | 350 96%                    | 9e-119         | 88.31%             | 258         | <u>EHH61820.1</u>     | Ē          |
| <b></b>                                       | skin-specific protein 32 [Trachypithecus francoisi]                           | Trachypithecus francoisi     | 347            | 347 98%                    | 1e-117         | 86.09%             | 271         | <u>XP_033051639.1</u> |            |
|                                               | skin-specific protein 32 [Macaca fascicularis]                                | Macaca fascicularis          | 346            | 346 96%                    | 4e-117         | 82.71%             | 276         | XP_045219182.1        | -          |
| ● 34°C<br>Sunny                               | Q Search                                                                      | D 🕸 📮 🤤 🔮 I                  | ē 🤹            | <b>.</b>                   |                | ^ Ç                | ENG<br>IN   | 奈 (1) <b>D</b> 5      | 12:06 PM 5 |

Fig 12 MUTATION 3 RESULT 2

| Sr. | Scientific nome     | Max   | Total | Query | E-            | Percentage |
|-----|---------------------|-------|-------|-------|---------------|------------|
| No. | Scientific name     | Score | Score | Cover | Value         | Identity   |
|     |                     |       |       |       | 5.00E-        |            |
| 1   | Homo Sapiens        | 461   | 461   | 100%  | 163           | 98.40%     |
|     |                     |       |       |       | 6 00F-        |            |
| 2   | Gorilla gorilla     | 454   | 454   | 100%  | 160           | 96.80%     |
|     |                     |       |       |       | 2.005         |            |
| 3   | Pan troglotytes     | 450   | 450   | 100%  | 2.00E-<br>158 | 96 40%     |
| 5   |                     |       | 450   | 10070 | 150           | 20.4070    |
|     | Nomascus            |       | _     |       | 2.00E-        |            |
| 4   | Leucogenya          | 366   | 366   | 96%   | 125           | 90.00%     |
|     | Maaaaa mulatta      |       |       |       | 4.00E-        |            |
| 5   |                     | 356   | 356   | 96%   | 121           | 89.11%     |
|     |                     |       |       |       | 6.00E-        |            |
| 6   | Hylobates moloch    | 365   | 365   | 95%   | 125           | 90.34%     |
|     |                     |       |       |       | 2 00F-        |            |
| 7   | Pongo abelii        | 367   | 367   | 97%   | 125           | 94.65%     |
|     | D1: :4              |       |       |       | 0.005         |            |
| 0   | Rhinopithecus       | 257   | 257   | 070/  | 9.00E-        | 02 000/    |
| 0   | roxenana            | 557   | 557   | 97%   | 122           | 95.00%     |
|     | Rhinopithecus bieti |       |       |       | 1.00E-        |            |
| 9   |                     | 357   | 357   | 97%   | 121           | 93.00%     |
|     | Magaga faggiaularia | •     |       |       | 9.00E-        |            |
| 10  | wacaca fascicularis | 350   | 350   | 96%   | 119           | 88.31%     |
|     |                     |       |       |       |               |            |

# Culminated Tabular representation of Results

Max Score

| Sr. No. | Output: Scientific<br>name | Original | Mutation1 | Mutation2 | Mutation3 |
|---------|----------------------------|----------|-----------|-----------|-----------|
| 1       | Homo Sapiens               | 473      | 466       | 465       | 461       |
| 2       | Gorilla gorilla            | 465      | 458       | 457       | 454       |
| 3       | Pan troglotytes            | 462      | 455       | 454       | 450       |

|    | Nomascus            |     |     |     |     |
|----|---------------------|-----|-----|-----|-----|
| 4  | Leucogenya          | 444 | 372 | 370 | 366 |
| 5  | Macaca mulatta      | 443 | 360 | 360 | 356 |
| 6  | Hylobates moloch    | 443 | 370 | 369 | 365 |
| 7  | Pongo abelii        | 380 | 372 | 371 | 367 |
|    | Rhinopithecus       |     |     |     |     |
| 8  | roxellana           | 370 | 362 | 362 | 357 |
| 9  | Rhinopithecus bieti | 369 | 362 | 361 | 357 |
| 10 | Macaca fascicularis | 358 | 351 | 353 | 350 |
|    | 1                   | 1   |     |     |     |

| Total<br>Score |                            |          |           |           |           |
|----------------|----------------------------|----------|-----------|-----------|-----------|
| Sr. No.        | Output: Scientific<br>name | Original | Mutation1 | Mutation2 | Mutation3 |
| 1              | Homo Sapiens               | 473      | 466       | 929       | 461       |
| 2              | Gorilla gorilla            | 465      | 458       | 913       | 454       |
| 3              | Pan troglotytes            | 462      | 455       | 907       | 450       |
|                | Nomascus                   |          |           |           |           |
| 4              | Leucogenya                 | 444      | 372       | 741       | 366       |
| 5              | Macaca mulatta             | 443      | 360       | 719       | 356       |
| 6              | Hylobates moloch           | 443      | 370       | 739       | 365       |
| 7              | Pongo abelii               | 380      | 372       | 743       | 367       |
|                | Rhinopithecus              |          |           |           |           |
| 8              | roxellana                  | 370      | 362       | 723       | 357       |
| 9              | Rhinopithecus bieti        | 369      | 362       | 721       | 357       |
| 10             | Macaca fascicularis        | 358      | 351       | 707       | 350       |
|                |                            | 1        |           |           |           |

Query Cover

| Sr. No. | Output: Scientific<br>name | Original | Mutation1 | Mutation2 | Mutation3 |
|---------|----------------------------|----------|-----------|-----------|-----------|
| 1       | Homo Sapiens               | 100%     | 100%      | 100%      | 100%      |
| 2       | Gorilla gorilla            | 100%     | 100%      | 100%      | 100%      |
| 3       | Pan troglotytes            | 100%     | 100%      | 100%      | 100%      |
|         | Nomascus                   |          |           |           |           |
| 4       | Leucogenya                 | 100%     | 96%       | 96%       | 96%       |
| 5       | Macaca mulatta             | 100%     | 96%       | 96%       | 96%       |
| 6       | Hylobates moloch           | 100%     | 96%       | 96%       | 95%       |
| 7       | Pongo abelii               | 98%      | 98%       | 98%       | 97%       |
|         | Rhinopithecus              |          |           |           |           |
| 8       | roxellana                  | 98%      | 98%       | 98%       | 97%       |
| 9       | Rhinopithecus bieti        | 98%      | 98%       | 98%       | 97%       |
| 10      | Macaca fascicularis        | 96%      | 96%       | 96%       | 96%       |

| E-Value |                            |               |               |               |               |
|---------|----------------------------|---------------|---------------|---------------|---------------|
| Sr. No. | Output: Scientific<br>name | Original      | Mutation1     | Mutation2     | Mutation3     |
| 1       | Homo Sapiens               | 1.00E-<br>167 | 6.00E-<br>165 | 3.00E-<br>160 | 5.00E-<br>163 |
| 2       | Gorilla gorilla            | 1.00E-<br>164 | 8.00E-<br>162 | 4.00E-<br>157 | 6.00E-<br>160 |
| 3       | Pan troglotytes            | 3.00E-<br>163 | 2.00E-<br>160 | 6.00E-<br>156 | 2.00E-<br>158 |
| 4       | Nomascus<br>Leucogenya     | 2.00E-<br>156 | 2.00E-<br>127 | 3.00E-<br>123 | 2.00E-<br>125 |
| 5       | Macaca mulatta             | 8.00E-<br>156 | 2.00E-<br>123 | 9.00E-<br>118 | 4.00E-<br>121 |
| 6       | Hylobates moloch           | 1.00E-<br>155 | 4.00E-<br>127 | 9.00E-<br>123 | 6.00E-<br>125 |

| 7  | Pongo abelii               | 1.00E-<br>130 | 1.00E-<br>127 | 2.00E-<br>123 | 2.00E-<br>125 |
|----|----------------------------|---------------|---------------|---------------|---------------|
| 8  | Rhinopithecus<br>roxellana | 1.90E-<br>126 | 1.00E-<br>123 | 9.00E-<br>120 | 9.00E-<br>122 |
| 9  | Rhinopithecus bieti        | 1.00E-<br>126 | 2.00E-<br>123 | 2.00E-<br>119 | 1.00E-<br>121 |
| 10 | Macaca fascicularis        | 9.00E-<br>124 | 6.00E-<br>119 | 1.00E-<br>114 | 9.00E-<br>119 |

| Percentage |                            |          |           |           |           |
|------------|----------------------------|----------|-----------|-----------|-----------|
| Identity   |                            |          |           |           |           |
| Sr. No.    | Output: Scientific<br>name | Original | Mutation1 | Mutation2 | Mutation3 |
| 1          | Homo Sapiens               | 100%     | 98.80%    | 98.80%    | 98.40%    |
| 2          | Gorilla gorilla            | 99.60%   | 97.20%    | 97.20%    | 96.80%    |
| 3          | Pan troglotytes            | 98%      | 96.80%    | 96.80%    | 96.40%    |
|            | Nomascus                   |          |           |           |           |
| 4          | Leucogenya                 | 94.80%   | 90.42%    | 90.42%    | 90.00%    |
| 5          | Macaca mulatta             | 93.41%   | 89.52%    | 89.52%    | 89.11%    |
| 6          | Hylobates moloch           | 94.80%   | 90.42%    | 90.42%    | 90.34%    |
| 7          | Pongo abelii               | 95.92%   | 94.69%    | 94.69%    | 94.65%    |
|            | Rhinopithecus              |          |           |           |           |
| 8          | roxellana                  | 94.29%   | 93.06%    | 93.06%    | 93.00%    |
| 9          | Rhinopithecus bieti        | 94.29%   | 93.06%    | 93.06%    | 93.00%    |
| 10         | Macaca fascicularis        | 89.92%   | 83.08%    | 88.71%    | 88.31%    |

## Conclusion

Researchers can now assess the genomic makeup of a broad variety of different animals thanks to the concurrent development of huge volumes of sequencing initiatives and bioinformatics tools like BLAST. This has aided bioinformatics in bridging the gap between computer science and biology, which is crucial for the further development of the field. As a

result, the analysis of genome sequence data using bioinformatics techniques has become an essential part of modern scientific research. BLAST is one of the most well-known techniques in the field of bioinformatics, and because it is available to all researchers online, it is commonly used to categorise sequences according to their functional and taxonomic characteristics. Applications include everything from testing to general expansion into sequence-based data, ranging from the analysis of raw sequence data to the assessment of genomic similarities.

## **Future Scope**

In addition to identifying genes, classifying protein structures, making gene predictions, identifying genes, and diagnosing various illnesses that influence how genes are expressed, among other things, it is possible to analyse the evidence for evolution and to extract useful patterns in gene expression. Data mining, which is crucial for pattern identification, categorization of data, for predicting events, or for induction within genetic networks, gives the ability to analyse bioinformatics information.

#### References

- [1] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: **Basic local alignment search tool**. *J Mol Biol* 1990, **215**:403-410.
- [2] NCBI BLASt [http://www.ncbi.nlm.nih.gov/BLAST/]
- [3] WU-BLAST [http://blast.wustl.edu/]
- [4] Baxevanis AD, Ouellette BFF (eds): *Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins*. John Wiley; 1998.
- [5] Durbin R, Eddy S, Krogh A, Mitchison G: *Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids*. Cambridge: Cam- bridge University Press; 1998.
- [6] Higgins D, Taylor W (eds): *Bioinformatics: Sequence, Structure and Databanks*. New York: Oxford University Press; 2000.
- [7] Kanehisa M: Post-Genome Informatics. New York: Oxford University Press; 2000.
- [8] Gibas L, Jambeck P: *Developing Bioinformatics Computer Skills*. Sebastopol, California: O'Reilly and Associates; 2001.
- [9] Wake DB: Comparative terminology. Science 1994, 265:268-269.
- [10] Wake DB: Homoplasy, homology and the problem of 'same- ness' in biology. *Novartis Found Symp* 1999, **222**:24-33.
- [11] Reeck GR, de Haen C, Teller DC, Doolittle RF, Fitch WM, Dicker- son RE, Chambon P, McLachlan AD, Margoliash E, Jukes TH, *et al.*: "Homology" in proteins and nucleic acids: a terminology muddle and a way out of it. *Cell* 1987, 50:667
- [12] Pearson WR, Lipman DJ: Improved tools for biological sequence comparison. *Proc Natl Acad Sci USA* 1988, **85:**2444-2448.
- [13] Altschul SF, Boguski MS, Gish W, Wootton JC: Issues in searching molecular sequence databases. Nat Genet 1994, 6:119-129.
- [14] Pearson WR: Searching protein sequence libraries: compari- son of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. *Genomics* 1991,

pp: 2830 – 2848

**11:**635-650.

- [15] Koski LB, Golding GB: The closest BLAST hit is often not the nearest neighbor. J Mol Evol 2001, 52:540-542.
- [16] Henikoff S, Henikoff JG: Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 1992, 89:10915-10919.
- [17] Dayhoff MO, Schwartz RM, Orcutt BC: A model of evolutionary change in proteins. In: *Atlas of Protein Sequence and Structure*, vol.
- [18] 5. Edited by Dayhoff MO. Washington DC: National Biomedical Research Foundation; 1978:345-352.
- [19] States DJ, Gish W, Altschul SF: Improved sensitivity of nucleic acid database searches using application-specific scoring matrices. *Methods: A Companion to Methods in Enzymology* 1991, 3:66-70.
- [20] Henikoff S, Henikoff JG: Protein family classification based on searching a database of blocks. *Genomics* 1994, 19:97-107.
- [21] Henikoff S, Henikoff JG: Automated assembly of protein blocks for database searching. *Nucleic Acids Res* 1991, **19**:6565-6572.
- [22] NCBI FTP directory BLAST matrices
- [23] [ftp://ncbi.nlm.nih.gov/blast/matrices]
- [24] Needleman SB, Wunsch CD: A general method applicable to the search for similarities in the amino acid sequence of two proteins. *J Mol Biol* 1970, **48**:443-453.
- [25] Smith TF, Waterman MS: Identification of common molecular subsequences. J Mol Biol 1981, 147:195-197.
- [26] Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL: GenBank. Nucleic Acids Res 2000, 28:15-18.
- [27] GenBank [http://www.ncbi.nlm.nih.gov/Genbank/]
- [28] Bairoch A, Apweiler R: The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 2000, 28:45-48.
- [29] SWISS-PROT [http://www.expasy.ch/sprot/]
- [30] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new genera- tion of protein database search programs. *Nucleic Acids Res* 1997, 25:3389-3402.
- [31] Karlin S, Altschul SF: Applications and statistics for multiple high-scoring segments in molecular sequences. *Proc Natl Acad Sci USA* 1993, **90**:5873-5877.
- [32] Lamperti ED, Kittelberger JM, Smith TF, Villa-Komaroff L: Corrup- tion of genomic databases with anomalous sequence. *NucleicAcids Res* 1992, 20:2741-2747.
- [33] Kristensen T, Lopez R, Prydz H: An estimate of the sequencing error frequency in the DNA sequence databases. *DNA Seq* 1992, **2**:343-346.
- [34] Full list of the BLAST Advanced options
- [35] [http://www.ncbi.nlm.nih.gov/BLAST/full\_options.html]
- [36] States DJ, Botstein D: Molecular sequence accuracy and the analysis of protein coding regions. *Proc Natl Acad Sci USA* 1991,88:5518-5522.
- [37] Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult

- CJ, Tomb JF, Dougherty BA, Merrick JM, *et al.*: Whole-genome random sequencing and assembly of *Haemophilus influenzae* Rd. *Science* 1995, 269:496-512.
- [38] Ichikawa T, Suzuki Y, Czaja I, Schommer C, Lessnick A, Schell J, Walden R: Identification and role of adenylyl cyclase in auxin signalling in higher plants. *Nature* 1997, **390**:698-701.
- [39] Ichikawa T, Suzuki Y, Czaja I, Schommer C, Lessnick A, Schell J, Walden R: Identification and role of adenylyl cyclase in auxinsignalling in higher plants. *Nature* 1998, 396:390.
- [40] Karlin S, Altschul SF: Methods for assessing the statistical sig-nificance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci USA 1990, 87:2264-2268.
- [41] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3007598/