ISSN: 0103-944X

Volume 11 Issue 1, 2023

pp: 922 - 929

Some More Properties of Micro SP-Continuous using Micro SP-open Sets.

M.Maheswari¹, S. Dhanalakshmi² and N. Durgadevi³

¹ Research Scholar, Department of Mathematics, Sri Parasakthi College for Women, Courtallam. (Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu) Email: udayar.mahesh@gmail.com

²Research Scholar, Department of Mathematics, Sri Parasakthi College for Women, Courtallam. (Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu) Email: prithira456@gmail.com

³Assistant Professor, Department of Mathematics, Sri Parasakthi College for Women, Courtallam. (Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu) Email: durgadevin@sriparasakthicollege.edu.in

Abstract:

The objective of this paper is to study some more properties of Micro SP-continuous in Micro SP-topological spaces. Also we define and analyze Micro SP-homeomorphism in terms of Strongly Micro-continuous and Strongly Micro SP-open map.

Keywords:

Micro SP-open, Micro SP-closed, Micro-continuous, Micro SP-continuous, Strongly Micro SP-continuous, Strongly Micro SP-open map, Micro SP-homeomorphism.

1. Introduction

Continuous function plays a vital role in Topological spaces. In 2019, Continuous function of Micro topological spaces was proposed by Chandrasekar.S [1]. Taha H.Jasimet al [8] generalized the Micro-continuous function to the concept of Micro generalized irresolute function in 2021. Hariwan Z Ibrahim [4] defined the mapping which is Micro-closed map in 2020. In 2022, Micro SP-continuous function in Micro topological spaces is introduced by Hardi A.Shareef [3]. In this paper some more properties of Micro SP-continuous functions are studied. Also the new class of functions called Strongly Micro SP-continuous function and Strongly Micro SP-open map are defined and few results involving their equivalent characterizations are derived. In addition, Micro SP-homeomorphism is defined as well as certain remarkable properties are deduced.

ISSN: 0103-944X

Volume 11 Issue 1, 2023

pp: 922 – 929

2. Preliminaries

Definition2.1.[1] Let(U, $\tau R(X)$) be a Nano topological space. Then $(U,\tau R(X))=\{N \cup (N'\cap \mu):N,N'\in \tau R(X)\}$ and $\mu\notin \tau R(X)$ is called the Micro topology on U with respect to The triplet $(U,\tau R(X))$, $\mu R(X)$) is called Micro topological space and the elements of $\mu R(X)$ are Micro-open sets and the complement of Micro-open set is called a Micro-closed set.

Definition 2.2.[5] Let $(U, \tau R(X), \mu R(X))$ be a Micro topological space and $A \subseteq U$. Then A is said to be Micro SP-open (briefly Mic SP-open) if for each $x \in A \in \text{Mic-SO}(U,X)$ there exists a micro pre-closed set F such that $x \in F \subseteq A$. The collection of all Micro SP-open sets is denoted by Mic SP-O (U,X).

Definition 2.3. [5] Let(U, $\tau R(X)$, $\mu R(X)$) be a Micro topological space. A subset B of U is called Micro SP-closed (briefly Mic SP-closed) if and only if its complement is Micro SP-open and Mic SP-CL (U,X)denotes the set of all Micro SP-closed sets.

Definition 2.4. [5] For any two subsets A and B of a Micro topological space $(U, \tau_R(X), \mu_R(X))$, the following properties are true.

- (i) $\operatorname{Mic} \operatorname{SP-Int}(\operatorname{Mic} \operatorname{SP-Int}(A)) \operatorname{Mic} \operatorname{SP-Int}(A)$.
- (ii) $\operatorname{Mic} \operatorname{SP-Int}(A) = \operatorname{U} \operatorname{Mic} \operatorname{SP-Cl}(\operatorname{U} A)$
- (iii) If $A \subseteq B$, then Mic SP-Cl(A) \subseteq Mic SP-Cl(B)
- (iv) Mic SP-Cl(A) \cup Mic SP-Cl(B) \subseteq Mic SP-Cl(A \cup B)
- (v) $\operatorname{Mic} \operatorname{SP-Cl}(A \cap B) \subseteq \operatorname{Mic} \operatorname{SP-Cl}(A) \cap \operatorname{Mic} \operatorname{SP-Cl}(B)$.

Definition 2.5. [5] For any two subsets A and B of a Micro topological space $(U, \tau R(X), \mu R(X))$, the following properties are true.

- (i) $\operatorname{Mic} \operatorname{SP-Cl}(\operatorname{Mic} \operatorname{SP-Cl}(A)) = \operatorname{Mic} \operatorname{SP-Cl}(A).$
- (ii) $\operatorname{Mic} \operatorname{SP-Cl}(A) = \operatorname{U} \operatorname{Mic} \operatorname{SP-Int}(\operatorname{U} \operatorname{A})$
- (iii) IfACB,thenMicSP-Cl(A)CMicSP-Cl(B)
- (iv) Mic SP-Cl(A) \cup Mic SP-Cl(B) \subseteq Mic SP-Cl(A \cup B)
- (v) $\operatorname{MicSp-Cl}(A \cap B) \subset \operatorname{MicSp-Cl}(A) \cap \operatorname{MicSp-Cl}(B)$.

ISSN: 0103-944X

Volume 11 Issue 1, 2023

pp: 922 – 929

Definition 2.6. [1] Let $(U, \tau R(X), \mu R(X))$ and $V, \tau R(Y), \mu R(Y))$ be two Micro topological spaces. A function $f: U \to V$ is said to be Micro-continuous function if $f^{-1}(A)$ is Micro-open in U for every Micro-open set A in V.

Definition 2.7 [2] Let U, $\tau R(X)$, $\mu R(X)$) and V, $\tau R(Y)$, $\mu R(Y)$) be two Micro topological spaces. A function $f: U \to V$ is said to be Micro-closed map if for any Micro closed set B in V, f(A) is Micro-closed in U.

Definition 2.8 [3] A function $f:V \to V'$ where $(V,\tau \lceil (X),\mu \lceil (X))$ and where $(V',\tau' \lceil '(Y),\mu' \lceil '(Y))$ are Micro topological spaces is called Micro SP-continuous function at a point $x \in V$ iff or each Micro open set H in V' containing f(x). There exists a Micro SP-open set K in V containing X such that $f(K) \subseteq H$.

3. Properties of Micro Sp-continuous functions

Theorem3.1. Afunction $f: U \rightarrow V$ is Micro SP-continuous if and only if each of the following holds.

- (i) The inverse image of every Micro-closed set in V is Micro SP-closed in U.
- (ii) Mic SP-Cl[$f^{-1}(F) \subseteq f^{-1}[Mic-Cl(F)]$ for all $F \subseteq V$.
- (iii) f^{-1} [Mic-Int(H) \subseteq Mic SP-Int[f^{-1} (B)] for all H \subseteq V.

Proof:

(i) Necessity: Let f be Micro SP-continuous and $F \in Mic Cl(V, Y)$ That is $(V - F) \in Mic O(V,Y)$. Since f is Micro SP-continuous, $f^{-1}(V - F) \in Mic SP-(U, X)$. That is $(U - f^{-1}(F) \in Mic SP-O(U,X)$ implies that $f^{-1}(F) \in Mic SP-CL(U,X)$. Thus the inverse image of every Microclosed set in V is Micro SP-closed in U, if f is Micro SP-continuous on U.

Micro SP-closed in U, iff is Micro SP-continuous on U.

(ii) Necessity: If f is Micro SP-continuous and $F \subseteq V$ and Mic-Cl(F) \in Mic-CL(V,Y) and from (i), f^{-1} (Mic-Cl(F)) SP-CL(U,X) implies Mic SP-Cl(f^{-1} (Mic-Cl(F))) = f^{-1} (Mic-Cl(F)). Since $F \subseteq \text{Mic-Cl}(F)$ which implies $f^{-1}(F) \subseteq f^{-1}(\text{Mic-Cl}(F))$. Thus Mic SP-Cl(f^{-1} (Mic-Cl(F)) $\subseteq f^{-1}(\text{Mic-Cl}(F))$.

Sufficiency: Let Mic SP-Cl($f^{-1}(F)$) $\subseteq f^{-1}(Mic\text{-Cl}(F))$ for every $F \subseteq V$.Let $F \in Mic\text{-CL}(V,Y)$. Then Mic-Cl(F) = F. By assumption, Mic SP-Cl($f^{-1}(F)$) $\in f^{-1}(Mic\text{-Cl}(F)) = f^{-1}(F)$. Thus Mic SP-

ISSN: 0103-944X

Volume 11 Issue 1, 2023

pp: 908 – 921

 $Cl(f^{-1}(F)) \subseteq f^{-1}(F)$. But $f^{-1}(F) \subseteq Mic SP-Cl(f^{-1}(F))$. There Mic SP-Cl $(f^{-1}(F)) = f^{-1}(F)$. Thus $f^{-1}(F)$ is Micro SP-closed in U for every Micro-closed set F in V. Hence f is Micro SP-continuous.

(iii) Necessity: Let f be Micro SP-continuous and $B \subseteq V$. Then Mic-Int(B) \in Mic-O(V,Y) Therefore f^{-1} (Mic-Int(B)) \in Mic SP-O(U, X). That is f^{-1} (Mic-Int(B)) = Mic SP-Int(f^{-1} (Mic-Int(B))). Also Mic-Int(B) \subseteq B implies Mic SP-Int(f^{-1} (Mic-Int(B))) \subseteq Mic-Int(f^{-1} (B)). Therefore

 $f^{-1}(\text{Mic-Int}(B)) = \text{MicSP-Int}(f^{-1}(\text{Mic-Int}(B))) \subseteq \text{Mic SP-Int}(f^{-1}(B))$. That is $f^{-1}(B) = f^{-1}(\text{Mic-Int}(B)) \subseteq \text{Mic SP-Int}(f^{-1}(B))$.

Sufficiency: Let f^{-1} (Mic-Int(B)) \subseteq Mic SP-Int(f^{-1} (B)) for every subset B of V. If B \in Mic-O(V,Y), F = Mic-Int(B). Also f^{-1} (B) = f^{-1} (Mic-Int(B)), but f^{-1} (Mic-Int(B)), but = f^{-1} (Mic-Int(B)) \subseteq Mic SP-Int(f^{-1} (B)). That is f^{-1} (B) = f^{-1} (Mic-Int(B)) \subseteq Mic SP-Int(f^{-1} (B)). Thus f^{-1} (B) = MicSP-Int(f^{-1} (B)) which implies f^{-1} (B) is Micro SP-open in U for every Micro-open set B in V. Hence f is Micro SP-continuous.

Definition 3.2. Let $(U, \tau R(X), \mu R(X))$ and $(V, \tau R(Y), \mu R(Y))$ be two Micro topological spaces. A function $f: U \to V$ is said to be Strongly Micro SP-continuous function if $f^{-1}(B)$ is Micro-open in U for every Micro SP-open set B in V.

Example 3.3. Let $U=\{a,b,c,d\}$, with $U|R=\{\{a,d\},\{b\},\{c\}\}$ and $X=\{c,d\}\}$, Then $\tau R(X)=\{U,\phi,\{c\},\{a,d\},\{a,c,d\}\}$. If $\mu=\{b\}$ then $\mu R(X)=\{U,\phi,\{b\},\{a,d\},\{b,c\},\{a,b,d\},\{a,c,d\}\}$. Also $V=\{U,\phi,\{b\},\{a,d\},\{b,c\},\{a,b,d\},\{a,c,d\}\}$.

 $\{1,2,3,4\} \text{ with } V|R=\{\{1\},\{2,3\},\{4\}\} \text{ and } Y=\{2,4\}. \\ \text{Then } \tau R(Y)=(V,\varphi,\,\{4\},\{2,3\},\{2,3,4\}\}. \\ \text{If } \mu=\{1\} \text{ then } \mu R(Y)=\{V,\varphi,\,\{1\},\{4\},\{1,4\},\{2,3\},\{1,2,3\},\{2,3,4\}\} \text{ and Micro SP-open sets in } V \text{ are } \{V,\varphi,\,\{1\},\{4\},\{1,4\},\{2,3\},\{1,2,3\},\{2,3,4\}\}. \\$

Define $f: U \to V$ as f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 3. Here $f^{-1}(\{1\}) = \{b\}$, $f^{-1}(\{4\}) = \{c\}$, $f^{-1}(\{1,4\}) = \{b,c\}$, $f^{-1}(\{2,3\}) = \{a,d\}$, $f^{-1}(\{1,2,3\}) = \{a,b,d\}$, $f^{-1}(\{2,3,4\}) = \{a,c,d\}$, $f^{-1}(U) = V$.

Hence *f* is Strongly Micro Sp-continuous.

Theorem 3.4. A function $f: U \rightarrow V$ is Strongly Micro SP-continuous if and only if each of the following holds.

- (i) The inverse image of every Micro Sp-closed set in V is Micro-closed in U.
- (ii) The inverse image of every Micro Sp-open set in V is Micro-open in V.
- (iii) Mic-Cl[$f^{-1}(F)$] $\subseteq f^{-1}[Mic SP-Cl(F)]$ for all $F \subseteq V$.
- (iv) $f^{-1}[Mic SP-Int(B)]=Mic-Int[f^{-1}(B)]$ for all $B \subset V$.

ISSN: 0103-944X

Volume 11 Issue 1, 2023

pp: 908 - 921

Proof: (i) Necessity: Let f be Strongly Micro SP-continuous and $F \in Mic SP-Cl(V,Y)$. That is, $(V - F) \in Mic SP-O(V,Y)$. Since f is Strongly Micro SP-continuous. $f^{-1}(V - F) \in Mic-O(U,X)$ and $(U-f^{-1}(F)) \in Mic-O(U,X)$. Hence $f^{-1}(F) \in Mic-CL(U,X)$.

Sufficiency: Let f^{-1} (F) \in Mic-CL(U,X), for all F \in Mic SP-CL(V,Y). Let B \in Mic SP-O(V,Y). Then $(V - B) \in$ Mic SP-CL(V,Y). Then f^{-1} (V - B) \in Mic-CL(U,X), that is (U - f^{-1} (F) \in Mic-CL(U,X) implies f^{-1} (F) \in Mic-O(U,X). Hence the inverse image of every Micro SP-open set in V is Micro-open in U. Therefore f is strongly Micro SP-continuous on U.

- (ii) Necessity: Let f be strongly Micro SP-continuous and B be any Micro SP-open set in V. If $f^{-1}(B) = \phi$, then $f^{-1}(B)$ is Micro-open in U.If $f^{-1}(B) \neq \phi$, then there exists a Micro-open set A in U containing x such that $f(A) \subseteq B$ which implies $x \in A \subseteq f^{-1}(B)$ and hence $f^{-1}(B)$ is Micro SP-open.
 - Sufficiency: Let B be any Micro-open set in V containing $f^{-1}(x)$, then $x \in f^{-1}(B)$ and by hypothesis $f^{-1}(B)$ is a Micro-open set in U containing x, so $f(f^{-1}(B)) \subseteq B$. Hence f is Strongly Micro SP-continuous.
 - (iii) Necessity: If f is Strongly Micro SP-continuous and $F \subseteq V$, Mic SP-Cl(F) \in Mic SP-CL(V,Y) and from (i) f^{-1} (Mic SP-Cl(F))) = f^{-1} (Mic SP-Cl(F))) \in Mic-CL(U,X) and Mic-Cl(f^{-1} (Mic SP-Cl(F))) = f^{-1} (Mic SP-Cl(F))). Since $F \subseteq$ Mic SP-Cl(F) which implies $f^{-1}(F) \subseteq f^{-1}$ (Mic SP-Cl(F))) implies that Mic-Cl($f^{-1}(F) \subseteq f^{-1}$ (Mic SP-Cl(F))) = f^{-1} (Mic SP-Cl(F))). Hence Mic-Cl($f^{-1}(F) \subseteq f^{-1}$ (Mic SP-Cl(F))). Sufficiency: Let Mic-Cl($f^{-1}(F) \subseteq f^{-1}(F) \subseteq f^{-1}(F$
 - CL(V, Y). Then Mic SP-Cl(F) = F. By assumption, Mic-Cl($f^{-1}(F)$) $\subseteq f^{-1}(MicSP-Cl(F)) = f^{-1}(F)$. Thus Mic-Cl($f^{-1}(F)$). But $f^{-1}(F) \subseteq Mic-Cl(f^{-1}(F))$. Therefore Mic-Cl($f^{-1}(F)$) = $f^{-1}(F)$ 0 where $f^{-1}(F) \in Mic-Cl(U,X)$, for every Micro SP-closed set F in V. Hence f is Strongly Micro SP-continuous on U.
- (iv) Necessity: Let f be strongly Micro SP-continuous and $B \subseteq V$. Then Mic SP-Int(B) \in Mic SP-O(V,Y). Thus f^{-1} (Mic SP-Int(B)) \in Mic-O(U,X). That is f^{-1} (Mic SP-Int(B))=

ISSN: 0103-944X

Volume 11 Issue 1, 2023

pp: 908 - 921

Mic-Int(f^{-1} Mic SP-Int(B))). Also Mic SP-Int(B) \subseteq B implies that Mic-Int(f^{-1} (Mic S_P-Int(B))) \subseteq Mic-Int(f^{-1} (B)). Thus f^{-1} (MicSP-Int(B)) = Mic-Int(f^{-1} (Mic SP-Int(B))) \subseteq Mic-

 $\operatorname{Int}(f^{-1}(B))$. Hence $f^{-1}(\operatorname{Mic}\operatorname{SP-Int}(B)) \subseteq \operatorname{Mic-Int}(f^{-1}(B))$.

Sufficiency: Let $(f^{-1}\text{Mic SP-Int}(B)) \subseteq \text{Mic-Int}((f^{-1}(B)))$, for every subset B of V. If B is Micro SP-open in V, B = Mic SP-Int(B). Also $f^{-1}(B) = f^{-1}$ (Mic SP-Int(B)), but f^{-1} (Mic SP-Int(B)) \subseteq Mic-Int($(f^{-1}(B))$ implies that $f^{-1}(B) = f^{-1}$ (Mic SP-Int(B)) \subseteq Mic-Int($(f^{-1}(B))$). Therefore $f^{-1}(B) = \text{Mic-Int}(f^{-1}(B))$. Thus $f^{-1}(B)$ is Micro-open in U for every Micro SP-open set B in V. Hence f is Strongly Micro SP-continuous.

Definition 3.5. Let $((U, \tau_R(X), \mu_R(X)), (V, \tau_R(Y), \mu_R(Y)))$ be two Micro topological spaces. Then a mapping. $f: U \to V$ is strongly Micro SP-open map if the image of every Micro SP-open set in U is Micro-open in V. The mapping f is said to be Strongly Micro SP-closed map if the image of every Micro SP-closed set in U is Micro-closed set in V.

Example 3.6. Let $U = \{a,b,c,d\}$ with $U|R = \{\{a,d\},\{b\},\{c\}\}\}$ and $X = \{c,d\}$, Then $\tau R(X) = \{U,\phi,$

$$\begin{split} &\{c\},\{a,d\},\{a,c,d\}\}. \text{ If } \mu = \{b\} \text{ then } \mu R(X) = \{U,\phi,\{b\},\{c\},\{a,d\},\{b,c\},\{a,b,d\}, \\ &\{a,c,d\}\}. \text{ Here}\{U,\phi,\{b\},\{c\},\{a,b,d\} \text{ are Micro SP-open sets in } U. \text{ Also let } V = \{1,2,3,4\} \\ &\text{with } V|R = \{\{1\},\{3\},\{2,4\}\} \text{ and } Y = \{2,4\}. \text{ Then} \tau R(Y) = \{V,\phi,\{2,4\}\}. \text{ If } \mu = \{1\} \text{ then } \mu R(Y) = \{Y,\phi,\{2,4\}\}. \end{split}$$

 $\{V, \phi, \{1\}, \{2,4\}, \{1,2,4\}\}\$ which are Micro-open sets in V.

Define $f: U \rightarrow V$ as f(a) = 2, f(b) = 1, f(c) = 1, f(d) = 4. Then the image of every Micro SP-open set in U is Micro-open in V. Hence f is Strongly Micro SP-open map.

4. Micro SP-homeomorphism

Definition 4.1. Let $((U, \tau_R(X), \mu_R(X)), (V, \tau_R(Y)), \mu_R(Y))$ be two Micro topological spaces. A bijective function $f: U \to V$ is said to be Micro SP-homeomorphism if f and f^{-1} are both Micro SP-continuous.

Example 4.2. Let $U = \{a,b,c,d\}$ with $U|R = \{\{a\},\{b,c\},\{d\}\}$ and $X = \{b,d\}$. Then $\tau_R(X) = \{U,\phi,\{c\},\{d\},\{b,c\},\{b,c,d\}\}$. If $\mu=\{a\}$ then $\mu_R(X) = \{U,\phi,\{a\},\{d\},\{a,d\},\{b,c\},\{a,b,c\},\{a,b,c\},\{b,c,d\}\}$. Micro SP-open sets in U are $\{U,\phi,\{a\},\{d\},\{a,d\},\{b,c\},\{a,b,c\},\{b,c,d\}\}$. Also let $V = \{1,2,3,4\}$ with $V|R = \{\{1,4\},\{2\},\{3\}\}$ and $Y = \{3,4\}$. Then $\tau_R(Y) = \{V,\phi,\{3\},\{1,4\},\{1,3,4\}\}$. If $\mu = \{2\}$ then $\tau_R(Y) = \{V,\phi,\{2\},\{3\},\{1,4\},\{2,3\},\{1,2,4\},\{1,3,4\}\}$.

ISSN: 0103-944X

Volume 11 Issue 1, 2023

pp: 908 - 921

Define a bijective function $f: U \to V$ as f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 3. Here $f^{-1}(\{2\}) = \{a\}$, $f^{-1}(\{3\}) = \{d\}$, $f^{-1}(\{1,4\}) = \{b,c\}$, $f^{-1}(\{2,3\}) = \{a,d\}$, $f^{-1}(\{1,2,4\}) = \{a,b,c\}$, $f^{-1}(\{1,3,4\}) = \{b,c,d\}$ and $f^{-1}(V) = U$. Therefore f is Micro SP-continuous. Also, here $f(\{a\}) = \{2\}$, $f(\{d\}) = \{3\}$, $f(\{b,c\}) = \{1,4\}$, $f(\{a,d\}) = \{2,3\}$, $f(\{a,b,c\}) = \{1,2,4\}$, $f(\{b,c,d\}) = \{1,3,4\}$ and f(U) = V. Thus

 f^{-1} is Micro SP-continuous. Here both f and f^{-1} are Micro SP-continuous. Hence f is Micro SP-Homeomorphism.

Definition 4.3 Let $(U, \tau R(X), \mu R(X)), (V, \tau R(Y)), \mu R(Y))$ be two Micro topological spaces. Then a bijective function $f: U \to V$ is said to be Strongly Micro SP-homeomorphism if f and f^{-1} are both Strongly Micro SP-continuous.

Example 4.4 Let $U = \{a,b,c,d\}$, with $U|R = \{\{a,d\},\{b\},\{c\}\}\}$ and $X = \{c,d\}$. Then $\tau R(X) = \{U,\phi,$

{c}, {a,d},{a,c,d}}. If $\mu = \{b\}$ then $\mu R(X) = \{U, \phi,\{b\},\{c\},\{a,d\},\{b,c\},\{a,b,d\},\{a,c,d\}\}\}$. Micro SP-open sets in U are $\{U,\phi,\{b\},\{c\},\{a,b,d\}\}$. Also let $V = \{1,2,3,4\}$ with $V|R = \{\{1\},$

 $\{2,3\},\ \{4\}\} \ \text{and}\ Y=\{2,4\}.\ \text{Then}\ \tau_R\ (Y)=\{V,\varphi,\{4\},\{2,3\},\{2,3,4\}.\ \text{If}\ \mu=\{1\}\ \text{then}\ \mu_R\ (Y)=\{V,\varphi,\{1\},\{4\},\{1,4\},\{2,3\},\{1,2,3\},\{2,3,4\}\}\ \text{which are Micro-open sets in }V.$

Define a bijective function $f: U \to V$ as f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 3. Here $f^{-1}(\{1\}) = \{b\}$,

 $f^{-1}(\{4\}) = \{c\}, f^{-1}(\{1,4\}) = \{b,c\}, f^{-1}(\{2,3\}) = \{a,d\}, f^{-1}(\{1,2,3\}) = \{a,b,d\}, f^{-1}(\{2,3,4\}) = \{a,c,d\} \text{ and } f^{-1}(U) = V.$ Thus f is Strongly Micro SP-continuous. Also, here $f(\{b\}) = \{1\}, f(\{c\}) = \{4\}, f(\{b,c\}) = \{1,4\}, f(\{a,b,d\}) = \{1,2,3\} \text{ and } f(U) = V.$ Therefore f^{-1} is Strongly Micro SP-continuous. Here both f and f^{-1} are Strongly Micro SP-continuous. Hence f is Strongly Micro SP-homeomorphism.

5. Conclusion

In this paper, we studied some more properties of Micro SP-continuous functions and expounded their relations with Strongly Micro SP-continuous and Strongly Micro SP-open map. Also we launched a Micro SP-homeomorphism concepts. Furthermore, this work will be extended to establish the new concepts of Micro SP-irresolute, Micro SP-open map and Micro SP-closed map and their relative properties will be derived. In future, Micro SP-homeomorphism concepts can be applied in real life situations through some Micro topological structures.

ISSN: 0103-944X

Volume 11 Issue 1, 2023

pp: 922 – 929

6. References

- [1] Chandrasekar. S: "On Micro topological Spaces", Journal of New Theory, Vol 26, 2019, Page No.23-31.
- [2] El-Atik and Hassan: "Some Nano topological structures via ideals and graphs", Journal of the Egyptian Mathematical Society, (2020),28:41.
- [3] Hardi A. Shareef: "A New Concept of Micro-semi-open sets", Journal of Northeastern University. Vol 25, No.4, 2022, Page No. 3983–3990.
- [4] Hariwan Z. Ibrahim: "Micro T ½-space", International Journal of Applied Mathematics, Vol33 No.3, 2020, Page No. 369-384.
- [5] Maheswari M. Dhanalakshmi S and Durgadevi N. "Micro Sp-open sets in Micro topological spaces", Ratio Mathematica, Vol 45, 2023, Page No. 90-96.
- [6] Rana H. Jassim, Reem O. Rasheed and Hairan I. Faris: "On θ-continuity in Micro Topological spaces", Journal of Physics: Conference Series, Vol 1804, PP. 012074, IOP Publishing(2021).
- [7] Reem O. Rasheed and Taha H. Jassim: "On Micro α-open sets and Micro α-continuous Functions in Micro topological spaces", Journal of Physics: Conference Series, Vol 1530, PP. 012061. IOP Publishing(2020).
- [8] Taha H. Jasim, Saja S. Mohsen, Kanayo S. Eke: "On Micro-generalized closed sets and Micro generalized continuity in Micro Topological Spaces", European Journal of Pure and Applied Mathematics, Vol 14, No. 4, 2021, 1507-1516.