Additive Inverse Cordial Labeling of Graphs

P. Manisha Rebecca¹ G. Priscilla Pacifica²

¹Research Scholar

Registration No. 19212212092003

Department of Mathematics St. Mary's College (Autonomous) Affiliated to ManonmaniamSundaranar University Thoothukudi - 628 001 Tamilnadu, India E.mail: manisharebecca82@gmail.com ²Assistant Professor Department of Mathematics St. Mary's College (Autonomous) Thoothukudi - 628 001 Tamilnadu, India. E-mail: pricillamelwyn@gmail.com

Abstract

Let *G* be a (p,q) graph. Consider the function Ψ from V(G) to the set $0, \pm 1$ and the induced surjective edge function $\Psi_e: E(G) \to \{0, \pm 1, \pm 2\}$ defined by $\Psi_e(uv) = \Psi(u) + \Psi(v)$. Let $v_{\Psi}(x)$ and $e_{\Psi}(y)$ respectively denote the number of vertices labelled by x, where $x \in \{0, \pm 1\}$, and number of edges labelled by y, where $y \in \{\pm 1, \pm 2\}$. Then Ψ is said to be an additive inverse cordial labelingif $|v_{\Psi}(i) - v_{\Psi}(j)| \le 1$, where $i, j \in \{0, \pm 1\}$ and $e_{\Psi}(x) = e_{\Psi}(-x), x \in \{\pm 1, \pm 2\}$. If G has an additive inverse cordial labeling Ψ then we say that G is an additive inverse cordial graph.

1. Introduction

Let G = (V, E) be a (p, q) graph. Throughout this paper we have considered only simple, connected, and undirected graphs. The number of vertices of G is called the order of G and the number of edges of G is called the size G. Graph labeling has wide range of applications, see [2]. The graph labeling problem was introduced by Rosa called graceful labelling [4] in the year 1967. In 1980, Cahit[1] introduced the cordial labeling of graphs. Motivated by this labelingwe introduce here a new type of graph labeling, called additive inverse cordial labeling. Also here we discuss the nature of this labeling on some standard graphs. Let x be any real number. Then the symbol [x] stands for the largest integer less than or equal to x and [x] stands for the smallest integer greater than or equal to x. Terms and definitions not defined here are used in the sense of Harary[3].

2. Preliminaries

Defintion: 2.1

Let u and v be (not necessarily distinct) vertices of a graph G. A u-v walkof G is a finite, alternating sequence $u = u_0, e_1, u_1, e_2, ..., u_{n-1}, e_n, u_n = v$ of vertices and edges, beginning with vertex u and ending with vertex v, such that $e_i = u_{i-1}u_i$, for i = 1, 2, ..., n. The number n is called the length of the walk.

The Ciência & Engenharia - Science & Engineering Journal ISSN: 0103-944X Volume 11 Issue 1, 2023 pp: 854 – 862 A walk $u_0, e_1, u_1, \ldots, u_{n-1}, e_n, u_n$ is determined by the sequence $u_0, u_1, u_2, \ldots, u_{n-1}, u_n$ of its vertices and hence we specify a walk simply by (u_0, u_1, \ldots, u_n) . A walk in which

vertices and hence we specify a walk simply by $(u_0, u_1, ..., u_n)$. A walk in which $u_0, u_1, ..., u_n$ are distinct is called a path. A walk $(u_0, u_1, ..., u_n)$ is called a closed walk if $u_0 = u_n$. A closed walk in which $u_0, u_1, ..., u_{n-1}$ are distinct is called a cycle. A path on n vertices is denoted by P_n and a cycle on n vertices is denoted by C_n .

Definiton: $2.2K_{1,n}$ is called a star.

Definiton: 2.3A graph G is complete, if every two of its vertices are adjacent. A complete graph on n vertices is denoted by K_n .

Definition: 2.4Let G be a (p,q) graph. Consider the function Ψ from V(G) to the set $\{0, \pm 1\}$ and the induced surjective edge function $\Psi_e: E(G) \rightarrow \{0, \pm 1, \pm 2\}$ defined by $\Psi_e(uv) = \Psi(u) + \Psi(v)$. Let $v_{\Psi}(x)$ and $e_{\Psi}(y)$ respectively denote the number of vertices labelled by x, where $x \in \{0, \pm 1\}$, and number of edges labelled by y, where $y \in \{\pm 1, \pm 2\}$. Then Ψ is said to be an additive inverse cordial labeling if $|v_{\Psi}(i) - v_{\Psi}(j)| \leq 1$, where $i, j \in \{0, \pm 1\}$ and $e_{\Psi}(x) = e_{\Psi}(-x), x \in \{\pm 1, \pm 2\}$. If G has an additive inverse cordial labeling Ψ then we say that G is an additive inverse cordial graph.

Illustration 2.1The graph given in fig 1. is an additive inverse cordial graph.

Figure.1

3. Main Results

Theorem: 3.1The path P_n is additive inverse cordial if and only if n > 4.

Proof. Let $P_n: u_1, u_2 \dots u_n$ be the path. Since Ψ_e is an onto function, we need atleast four edges so that all the four numbers from the set $\{\pm 1, \pm 2\}$ should be used to label the edges. This implies n > 4. On the other hand, we consider the following cases:

Case 1: $n \equiv 0 \pmod{12}$

Take n=12t, t > 0. Here we define Ψ from V(G) to {0, ± 1} as follows

$$\Psi(u_i) = \begin{cases} -1 & if & 1 \le i \le 4t \\ 0 & if & 4t+1 \le i \le 8t \\ 1 & if & 8t+1 \le i \le 4t \end{cases}$$

Then the induced edge function is given by.

$$\Psi_{e}(u_{i}u_{i+1}) = \begin{cases} -2 & if \quad 1 \leq i \leq 4t - 1\\ -1 & if \quad i = 4t\\ 0 & if \quad 4t + 1 \leq i \leq 8t - 1\\ 1 & if \quad i = 8t\\ 2 & if \quad 8t + 1 \leq i \leq 12t - 1 \end{cases}$$

Here $v_{\psi}(-1) = v_{\psi}(1) = v_{\psi}(0) = 4t$, $e_{\psi}(-2) = e_{\psi}(2) = 4t - 1$ and $e_{\psi}(-1) = e_{\psi}(1) = 1$.

Case 1: $n \equiv 1 \pmod{12}$

Take n=12t+1, t > 0. Define a map Ψ : $V(G) \rightarrow \{0, \pm 1\}$ by

$$\Psi(u_i) = \begin{cases} -1 & if & 1 \le i \le 4t+1 \\ 0 & if & 4t+2 \le i \le 8t+1 \\ 1 & if & 8t+2 \le i \le 4t+2 \end{cases}$$

Then the induced edge function is given by.

$$\Psi_e(u_i u_{i+1}) = \begin{cases} -2 & if \quad 1 \le i \le 4t \\ -1 & if \quad i = 4t+1 \\ 0 & if \quad 4t+2 \le i \le 8t+1 \\ 1 & if \quad i = 8t+2 \\ 2 & if \quad 8t+3 \le i \le 12t+4 \end{cases}$$

Here $v_{\psi}(-1) = v_{\psi}(1) = 4t$, $v_{\psi}(0) = 4t + 1$, $e_{\psi}(-2) = e_{\psi}(2) = 4t - 1$ and $e_{\psi}(-1) = e_{\psi}(1) = 1$.

Case 3: $n \equiv 5 \pmod{12}$

Take n=12t+2, t > 0. Here we define a function Ψ : V(G) \rightarrow {0, ±1} by

$$\Psi(u_i) = \begin{cases} -1 & if & 1 \le i \le 4t+1 \\ 0 & if & 4t+2 \le i \le 8t+1 \\ 1 & if & 8t+2 \le i \le 4t+2 \end{cases}$$

Then the induced edge function becomes

$$\Psi_e(u_i u_{i+1}) = \begin{cases} -2 & if \quad 1 \le i \le 4t \\ -1 & if \quad i = 4t+1 \\ 0 & if \quad 4t+2 \le i \le 8t \\ 1 & if \quad i = 8t+1 \\ 2 & if \quad 8t+2 \le i \le 12t+1 \end{cases}$$

Here $v_{\psi}(-1) = v_{\psi}(1) = 4t+1$, $v_{\psi}(0) = 4t$, $e_{\psi}(-2) = e_{\psi}(2) = 4t$ and $e_{\psi}(-1) = e_{\psi}(1) = 1$.

The Ciência & Engenharia - Science & Engineering Journal ISSN: 0103-944X Volume 11 Issue 1, 2023 pp: 854-862Case 3: $n \equiv 3 \pmod{12}$

Take n=12t+3, t > 0. Here we define a function $\Psi : V(G) \rightarrow \{0, \pm 1\}$ by

$$\Psi(u_i) = \begin{cases} -1 & if & 1 \le i \le 4t+1 \\ 0 & if & 4t+2 \le i \le 8t+2 \\ 1 & if & 8t+3 \le i \le 12t+2 \end{cases}$$

Then the induced edge function Ψ_e becomes

$$\Psi_e(u_i u_{i+1}) = \begin{cases} -2 & if \quad 1 \le i \le 4t \\ -1 & if \quad i = 4t+1 \\ 0 & if \quad 4t+2 \le i \le 8t+1 \\ 1 & if \quad i = 8t+2 \\ 2 & if \quad 8t+3 \le i \le 12t+2 \end{cases}$$

In this case

 $v_{\Psi}(-1) = v_{\Psi}(1) = v_{\Psi}(0) = 4t+1, e_{\Psi}(-2) = e_{\Psi}(2) = 4t \text{ and } e_{\Psi}(-1) = e_{\Psi}(1) = 1.$

Case 5: $n \equiv 4 \pmod{12}$

Take n=12t+4, t > 0. Define Ψ : V(G) \rightarrow { 0, ± 1 } by

$$\Psi(u_i) = \begin{cases} -1 & if \quad 1 \le i \le 4t+1\\ 0 & if \quad 4t+2 \le i \le 8t+3\\ 1 & if \quad 8t+4 \le i \le 12t+4 \end{cases}$$

Then the edge function Ψ_e becomes

$$\Psi_e(u_i u_{i+1}) = \begin{cases} -2 & if \quad 1 \le i \le 4t \\ -1 & if \quad i = 4t+1 \\ 0 & if \quad 4t+2 \le i \le 8t+2 \\ 1 & if \quad i = 8t+3 \\ 2 & if \quad 8t+4 \le i \le 12t+3 \end{cases}$$

In this case

 $v_{\psi}(-1)=v_{\psi}(1)=4t+1, v_{\psi}(0)=4t+2, e_{\psi}(-2)=e_{\psi}(2)=4t \text{ and } e_{\psi}(-1)=e_{\psi}(1)=1.$

Case 6: $n \equiv 5 \pmod{12}$

Take n=12t+5, t ≥ 0 . Define a map $\Psi : V(G) \rightarrow \{0, \pm 1\}$ by

$$\Psi(u_i) = \begin{cases} -1 & if \quad 1 \le i \le 4t+2\\ 0 & if \quad 4t+3 \le i \le 8t+3\\ 1 & if \quad 8t+4 \le i \le 12t+5 \end{cases}$$

Then the edge function Ψ_e is given by

$$\Psi_e(u_i u_{i+1}) = \begin{cases} -2 \ if \ 1 \le i \le 4t+1 \\ -1 \ if \ i = 4t+2 \\ 0 \ if \ 4t+3 \le i \le 8t+2 \\ 1 \ if \ i = 8t+3 \\ 2 \ if \ 8t+4 \le i \le 12t+4 \end{cases}$$

Clearly $v_{\psi}(-1) = v_{\psi}(1) = 4t+2$, $v_{\psi}(0) = 4t+1$, $e_{\psi}(-2) = e_{\psi}(2) = 4t+1$ and

$$e_{\psi}(-1)=e_{\psi}(1)=1.$$

Case 7: $n \equiv 6 \pmod{12}$

Take n=12t+6, t ≥ 0 . Define a map Ψ from V(G) to the set{0, ± 1 } as follows

$$\Psi(u_i) = \begin{cases} -1 & if \quad 1 \le i \le 4t+2\\ 0 & if \quad 4t+3 \le i \le 8t+4\\ 1 & if \quad 8t+5 \le i \le 12t+6 \end{cases}$$

Then the function Ψ_e is given by.

$$\Psi_e(u_i u_{i+1}) = \begin{cases} -2 \ if & 1 \le i \le 4t+1 \\ -1 \ if & i = 4t+2 \\ 0 \ if & 4t+3 \le i \le 8t+3 \\ 1 \ if & i = 8t+4 \\ 2 \ if & 8t+5 \le i \le 12t+5 \end{cases}$$

Here $v_{\psi}(-1) = v_{\psi}(1) = v_{\psi}(0) = 4t+2$, $e_{\psi}(-2) = e_{\psi}(2) = 4t+1$ and $e_{\psi}(-1) = e_{\psi}(1) = 1$.

Case 8: $n \equiv 7 \pmod{12}$

Let n=12t+7, $t \ge 0$. We define a map Ψ from V(G) to $\{0, \pm 1\}$ by

$$\Psi(u_i) = \begin{cases} -1 & if \quad 1 \le i \le 4t+2\\ 0 & if \quad 4t+3 \le i \le 8t+5\\ 1 & if \quad 8t+6 \le i \le 12t+7 \end{cases}$$

Then the induced edge function $\Psi_e: E(G) \to \{0, \pm 1, \pm 2\}$ is given by

$$\Psi_e(u_i u_{i+1}) = \begin{cases} -2 & if & 1 \le i \le 4t + 1\\ -1 & if & i = 4t + 2\\ 0 & if & 4t + 3 \le i \le 8t + 4\\ 1 & if & i = 8t + 5\\ 2 & if & 8t + 5 \le i \le 12t + 6 \end{cases}$$

Then $v_{\psi}(-1) = v_{\psi}(1) = 4t+2$, $v_{\psi}(0) = 4t+3$, $e_{\psi}(-2) = e_{\psi}(2) = 4t+1$ and $e_{\psi}(-1) = e_{\psi}(1) = 1$.

Case 9: $n \equiv 8 \pmod{12}$

Let n=12t+8, t $\geq q$ 0. Define a function Ψ from V(G) to {0, ±1} by

$$\Psi(u_i) = \begin{cases} -1 & if \quad 1 \le i \le 4t+3\\ 0 & if \quad 4t+4 \le i \le 8t+5\\ 1 & if \quad 8t+6 \le i \le 12t+8 \end{cases}$$

Then the edge function Ψ_e is given by

$$\Psi_e(u_i u_{i+1}) = \begin{cases} -2 \ if & 1 \le i \le 4t+2 \\ -1 \ if & i = 4t+3 \\ 0 \ if & 4t+4 \le i \le 8t+4 \\ 1 \ if & i = 8t+5 \\ 2 \ if & 8t+6 \le i \le 12t+7 \end{cases}$$

Then $v_{\psi}(-1) = v_{\psi}(1) = 4t + 3$, $v_{\psi}(0) = 4t + 2$, $e_{\psi}(-2) = e_{\psi}(2) = 4t + 2$ and $e_{\psi}(-1) = e_{\psi}(1) = 1$.

Case 10: $n \equiv 9 \pmod{12}$

Let n=12t+9, t \geq 0. Define a map Ψ : V(G) \rightarrow {0, \pm 1} as follows

$$\Psi(u_i) = \begin{cases} -1 & if \quad 1 \le i \le 4t+3\\ 0 & if \quad 4t+4 \le i \le 8t+6\\ 1 & if \quad 8t+7 \le i \le 12t+9 \end{cases}$$

Then the edge function Ψ_e is given by

$$\Psi_e(u_i u_{i+1}) = \begin{cases} -2 & if & 1 \le i \le 4t+2\\ -1 & if & i = 4t+3\\ 0 & if & 4t+4 \le i \le 8t+5\\ 1 & if & i = 8t+6\\ 2 & if & 8t+7 \le i \le 12t+8 \end{cases}$$

Then $v_{\psi}(-1) = v_{\psi}(1) = v_{\psi}(0) = 4t + 3$, $e_{\psi}(-2) = e_{\psi}(2) = 4t + 2$ and $e_{\psi}(-1) = e_{\psi}(1) = 1$.

Case 11: $n \equiv 10 \pmod{12}$

Let n=12t+10, t \geq 0. Define a function Ψ from V(G) to {0, \pm 1} by

$$\Psi(u_i) = \begin{cases} -1 & if \quad 1 \le i \le 4t+3\\ 0 & if \quad 4t+4 \le i \le 8t+7\\ 1 & if \quad 8t+8 \le i \le 12t+10 \end{cases}$$

Then the induced edge map Ψ_e becomes

$$\Psi_e(u_i u_{i+1}) = \begin{cases} -2 \ if & 1 \le i \le 4t+2 \\ -1 \ if & i = 4t+3 \\ 0 \ if & 4t+4 \le i \le 8t+6 \\ 1 \ if & i = 8t+7 \\ 2 \ if & 8t+8 \le i \le 12t+9 \end{cases}$$

In this case $v_{\psi}(-1) = v_{\psi}(1) = 4t + 3$, $v_{\psi}(0) = 4t + 4$, $e_{\psi}(-2) = e_{\psi}(2) = 4t + 2$ and $e_{\psi}(-1) = e_{\psi}(1) = 1$.

Case 12: $n \equiv 11 \pmod{12}$

Let n=12t+11, $t \ge 0$. Define $\Psi : V(G) \rightarrow \{0, \pm 1\}$ by

$$\Psi(u_i) = \begin{cases} -1 & if \quad 1 \le i \le 4t + 4\\ 0 & if \quad 4t + 5 \le i \le 8t + 7\\ 1 & if \quad 8t + 8 \le i \le 12t + 11 \end{cases}$$

Then the induced edge map Ψ_e becomes

$$\Psi_e(u_i u_{i+1}) = \begin{cases} -2 \ if & 1 \le i \le 4t+3 \\ -1 \ if & i = 4t+4 \\ 0 \ if & 4t+5 \le i \le 8t+6 \\ 1 \ if & i = 8t+7 \\ 2 \ if & 8t+8 \le i \le 12t+10 \end{cases}$$

Here $v_{\psi}(-1) = v_{\psi}(1) = 4t + 3$, $v_{\psi}(0) = 4t + 3$, $e_{\psi}(-2) = e_{\psi}(2) = 4t + 3$ and $e_{\psi}(-1) = e_{\psi}(1) = 1$.

Corollary:3.1.1The cycle C_n is additive inverse cordial, if and only if, n >4.

Proof:Since Ψ_e is a surjective function, we need atleast four edges so that all the four labels from the set $\{\pm 1, \pm 2\}$ should be used to label the edges, so n > 3. Consider the case n=4, suppose there exists an additive inverse cordial labeling Ψ . As Ψ_e is an onto function, -2 should be a label of any of the four edges of the cycle C_n . This label can be obtained only from two adjacent vertices with the label -1. So we have left with two non labeled vertices. As -2 is one of the edge label 2 should be a label of any of the remaining non-labeled edges. It is possible only when the two non-labeled adjacent vertices should be labeled by 1. If so, $v_{\Psi}(-1) = v_{\Psi}(1) = 2$, $v_{\Psi}(0) = 0$, a contradiction. Hence C_4 is not an additive inverse cordial graph. For n > 4, the labeling given in theorem 3.1 satisfies the required conditions. Hence C_4 is additive inverse cordial if n > 4.

Theorem: $3.2K_{1,n}$ is not additive inverse cordial.

Proof.Let u be the vertex of degree n in $K_{1,n}$. Suppose we assign 0 to u, then there doesn't exist an edge with the label 2. If we assign 1 to u, then 2 cannot be an edge label. Suppose we

The Ciência & Engenharia - Science & Engineering Journal ISSN: 0103-944X Volume 11 Issue 1, 2023 pp: 854 – 862 choose -1 as label of u, then there does not exist an edge with the label 2. In either case, Ψ_e is not onto and hence $K_{1,n}$ does not admit an additive inverse cordial labeling.

Theorem: 3.3 K_n is additive inverse cordial iff n> 3.

Proof. As the edge map is surjective, n should be greater than 3. Conversely, suppose $n \ge 4$ then we define Ψ as follows:

Case 1: $n \equiv 0 \pmod{3}$

Let n=3t, t > 0. Assign the label 0 to t vertices and then -1 to another t vertices and the remaining vertices are labeled by 1. In this case, $v_{\psi}(-1) = v_{\psi}(1) = v_{\psi}(0) = t$, $e_{\psi}(-2) = e_{\psi}(2) = {t \choose 2}$ and $e_{\psi}(-1) = e_{\psi}(1) = t^2$.

Case 2: $n \equiv 1 \pmod{3}$

Let n=3t+1, t > 0. Assign the label -1 to first t vertices then assign 1 to next t vertices. Finally we assign the label 0 to t+1 vertices. Here $v_{\psi}(-1) = v_{\psi}(1) = t$, $v_{\psi}(0) = t + 1$, $e_{\psi}(-2) = e_{\psi}(2) = {t \choose 2}$ and $e_{\psi}(-1) = e_{\psi}(1) = (t + 1)t$.

Case 3: $n \equiv 2 \pmod{3}$

Let n=3t+2, t > 0. Assign the label -1 to first t+1 vertices and assign the label 1 to next t+1 vertices. Finally we assign the label 0 to t vertices. Note that $v_{\psi}(-1) = v_{\psi}(1) = t + 1$, $v_{\psi}(0) = t$, $e_{\psi}(-2) = e_{\psi}(2) = {t+1 \choose 2}$

and
$$e_{\Psi}(-1) = e_{\Psi}(1) = (t+1)t$$
.

Hence K_n is additive inverse cordial for all $n \ge 4$.

Example 3.1A complete graph K_9 with an additive inverse cordial labeling is given below.

Figure.2

- 1. I.Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, *ArsCombinatoria*, **23**(1987), 201-207.
- 2. J.A.Gallian, A Dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, **19** (2017) #Ds6.
- 3. H F.Harary, Graph theory, Addisionwesley, New Delhi (1969).
- 4. A.Rosa, On certain valuations of the vertices of a graph, *Theory of Graphs (Internat. Symposium*, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967) 349-355.