Additive Inverse Cordial Labeling of Graphs

P. Manisha Rebecca ${ }^{1}$ G. Priscilla Pacifica ${ }^{2}$
${ }^{1}$ Research Scholar
Registration No. 19212212092003
Department of Mathematics St. Mary's College (Autonomous) Affiliated to
ManonmaniamSundaranar University Thoothukudi - 628001 Tamilnadu, India
E.mail: manisharebecca82@gmail.com
${ }^{2}$ Assistant Professor
Department of Mathematics St. Mary's College (Autonomous) Thoothukudi - 628001
Tamilnadu, India.
E-mail: pricillamelwyn@gmail.com

Abstract

Let G be a (p, q) graph. Consider the function Ψ from $V(G)$ to the set $0, \pm 1$ and the induced surjective edge function $\Psi_{e}: E(G) \rightarrow\{0, \pm 1, \pm 2\}$ defined by $\Psi_{e}(u v)=\Psi(u)+$ $\Psi(v)$. Let $v_{\Psi}(x)$ and $e_{\Psi}(y)$ respectively denote the number of vertices labelled by x , where $x \in\{0, \pm 1\}$, and number of edges labelled by y, where $y \in\{ \pm 1, \pm 2\}$. Then Ψ is said to be an additive inverse cordial labelingif $\left|v_{\Psi}(i)-v_{\Psi}(j)\right| \leq 1$, where $i, j \in\{0, \pm 1\}$ and $e_{\Psi}(x)=e_{\Psi}(-x), x \in\{ \pm 1, \pm 2\}$. If G has an additive inverse cordial labeling Ψ then we say that G is an additive inverse cordial graph.

\section*{1. Introduction}

Let $G=(V, E)$ be a (p, q) graph. Throughout this paper we have considered only simple, connected, and undirected graphs. The number of vertices of G is called the order of G and the number of edges of G is called the size G. Graph labeling has wide range of applications, see [2]. The graph labeling problem was introduced by Rosa called graceful labelling [4] in the year 1967. In 1980, Cahit[1] introduced the cordial labeling of graphs. Motivated by this labelingwe introduce here a new type of graph labeling, called additive inverse cordial labeling. Also here we discuss the nature of this labeling on some standard graphs. Let x be any real number. Then the symbol $\lfloor x\rfloor$ stands for the largest integer less than or equal to x and $\lceil x\rceil$ stands for the smallest integer greater than or equal to x . Terms and definitions not defined here are used in the sense of Harary [3].

2. Preliminaries

Defintion: 2.1

Let u and v be (not necessarily distinct) vertices of a graph G. A $\mathrm{u}-\mathrm{v}$ walkof G is a finite, alternating sequence $u=u_{0}, e_{1}, u_{1}, e_{2}, \ldots, u_{n-1}, e_{n}, u_{n}=v$ of vertices and edges, beginning with vertex u and ending with vertex v , such that $e_{i}=u_{i-1} u_{i}$, for $i=1,2, \ldots, n$. The number n is called the length of the walk.

The Ciência \& Engenharia - Science \& Engineering Journal
ISSN: 0103-944X
Volume 11 Issue 1, 2023
pp: 854-862
A walk $u_{0}, e_{1}, u_{1}, \ldots, u_{n-1}, e_{n}, u_{n}$ is determined by the sequence $u_{0}, u_{1}, u_{2}, \ldots, u_{n-1}, u_{n}$ of its vertices and hence we specify a walk simply by $\left(u_{0}, u_{1}, \ldots, u_{n}\right)$. A walk in which $u_{0}, u_{1}, \ldots, u_{n}$ are distinct is called a path. A walk $\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ is called a closed walk if $u_{0}=u_{n}$. A closed walk in which $u_{0}, u_{1}, \ldots, u_{n-1}$ are distinct is called a cycle. A path on n vertices is denoted by P_{n} and a cycle on n vertices is denoted by C_{n}.

Defintion: $\mathbf{2 . 2} K_{1, n}$ is called a star.
Defintion: 2.3A graph G is complete, if every two of its vertices are adjacent. A complete graph on n vertices is denoted by K_{n}.

Defintion: 2.4Let G be a (p,q) graph. Consider the function Ψ from $V(G)$ to the set $\{0, \pm 1\}$ and the induced surjective edge function $\Psi_{e}: E(G) \rightarrow\{0, \pm 1, \pm 2\}$ defined by $\Psi_{e}(u v)=$ $\Psi(u)+\Psi(v)$. Let $v_{\Psi}(x)$ and $e_{\Psi}(y)$ respectively denote the number of vertices labelled by x , where $\mathrm{x} \in\{0, \pm 1\}$, and number of edges labelled by y , where $\mathrm{y} \in\{ \pm 1, \pm 2\}$. Then Ψ is said to be an additive inverse cordial labeling if $\left|v_{\Psi}(i)-v_{\Psi}(j)\right| \leq 1$, where $\mathrm{i}, \mathrm{j} \in\{0, \pm 1\}$ and $e_{\Psi}(x)=e_{\Psi}(-x), x \in\{ \pm 1, \pm 2\}$. If G has an additive inverse cordial labeling Ψ then we say that G is an additive inverse cordial graph.

Illustration 2.1The graph given in fig 1. is an additive inverse cordial graph.

Figure. 1

3. Main Results

Theorem: 3.1The path P_{n} is additive inverse cordial if and only if $\mathrm{n}>4$.
Proof. Let $P_{n}: u_{1}, u_{2} \ldots u_{n}$ be the path. Since Ψ_{e} is an onto function, we need atleast four edges so that all the four numbers from the set $\{ \pm 1, \pm 2\}$ should be used to label the edges. This implies $\mathrm{n}>4$. On the other hand, we consider the following cases:

Case 1: $n \equiv 0(\bmod 12)$
Take $\mathrm{n}=12 \mathrm{t}, \mathrm{t}>0$. Here we define Ψ from $\mathrm{V}(\mathrm{G})$ to $\{0, \pm 1\}$ as follows

The Ciência \& Engenharia - Science \& Engineering Journal
ISSN: 0103-944X
Volume 11 Issue 1, 2023
pp: 854-862

$$
\Psi\left(u_{i}\right)=\left\{\begin{array}{llr}
-1 & \text { if } & 1 \leq i \leq 4 t \\
0 & \text { if } & 4 t+1 \leq i \leq 8 t \\
1 & \text { if } & 8 t+1 \leq i \leq 4 t
\end{array}\right.
$$

Then the induced edge function is given by.

$$
\Psi_{e}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ccr}
-2 & \text { if } & 1 \leq i \leq 4 t-1 \\
-1 & \text { if } & i=4 t \\
0 & \text { if } & 4 t+1 \leq i \leq 8 t-1 \\
1 & \text { if } & i=8 t \\
2 & \text { if } & 8 t+1 \leq i \leq 12 t-1
\end{array}\right.
$$

Here $v_{\Psi}(-1)=v_{\Psi}(1)=v_{\Psi}(0)=4 t, e_{\Psi}(-2)=e_{\Psi}(2)=4 t-1$ and $e_{\Psi}(-1)=e_{\Psi}(1)=1$.
Case 1: $n \equiv 1(\bmod 12)$
Take $\mathrm{n}=12 \mathrm{t}+1, \mathrm{t}>0$. Define a map $\Psi: V(G) \rightarrow\{0, \pm 1\}$ by

$$
\Psi\left(u_{i}\right)=\left\{\begin{array}{llrl}
-1 & \text { if } & & 1 \leq i \leq 4 t+1 \\
0 & \text { if } & 4 t+2 \leq i \leq 8 t+1 \\
1 & \text { if } & 8 t+2 \leq i \leq 4 t+2
\end{array}\right.
$$

Then the induced edge function is given by.

$$
\Psi_{e}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ccc}
-2 & \text { if } & 1 \leq i \leq 4 t \\
-1 & \text { if } & i=4 t+1 \\
0 & \text { if } & 4 t+2 \leq i \leq 8 t+1 \\
1 & \text { if } & \\
2 & \text { if } & 8 t+3 \leq i \leq 12 t+2 \\
2 & & i \leq 12 t+4
\end{array}\right.
$$

Here $v_{\Psi}(-1)=v_{\Psi}(1)=4 t, v_{\Psi}(0)=4 t+1, e_{\Psi}(-2)=e_{\Psi}(2)=4 t-1$ and $e_{\Psi}(-1)=$ $e_{\Psi}(1)=1$.

Case 3: $n \equiv 5(\bmod 12)$
Take $\mathrm{n}=12 \mathrm{t}+2, \mathrm{t}>0$. Here we define a function $\Psi: \mathrm{V}(\mathrm{G}) \rightarrow\{0, \pm 1\}$ by

$$
\Psi\left(u_{i}\right)=\left\{\begin{array}{rrr}
-1 & \text { if } & 1 \leq i \leq 4 t+1 \\
0 & \text { if } & 4 t+2 \leq i \leq 8 t+1 \\
1 & \text { if } & 8 t+2 \leq i \leq 4 t+2
\end{array}\right.
$$

Then the induced edge function becomes

$$
\Psi_{e}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ccc}
-2 & \text { if } & 1 \leq i \leq 4 t \\
-1 & \text { if } & i=4 t+1 \\
0 & \text { if } & 4 t+2 \leq i \leq 8 t \\
1 & \text { if } & i=8 t+1 \\
2 & \text { if } & 8 t+2 \leq i \leq 12 t+1
\end{array}\right.
$$

Here $v_{\Psi}(-1)=v_{\Psi}(1)=4 \mathrm{t}+1, v_{\Psi}(0)=4 \mathrm{t}, e_{\Psi}(-2)=e_{\Psi}(2)=4 \mathrm{t}$ and $e_{\Psi}(-1)=e_{\Psi}(1)=1$.

The Ciência \& Engenharia - Science \& Engineering Journal
ISSN: 0103-944X
Volume 11 Issue 1, 2023
pp: 854-862
Case 3: $n \equiv 3(\bmod 12)$
Take $\mathrm{n}=12 \mathrm{t}+3, \mathrm{t}>0$. Here we define a function $\Psi: \mathrm{V}(\mathrm{G}) \rightarrow\{0, \pm 1\}$ by

$$
\Psi\left(u_{i}\right)=\left\{\begin{array}{rrr}
-1 & \text { if } & 1 \leq i \leq 4 t+1 \\
0 & \text { if } & 4 t+2 \leq i \leq 8 t+2 \\
1 & \text { if } & 8 t+3 \leq i \leq 12 t+2
\end{array}\right.
$$

Then the induced edge function Ψ_{e} becomes

$$
\Psi_{e}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ccc}
-2 & \text { if } & 1 \leq i \leq 4 t \\
-1 & \text { if } & i=4 t+1 \\
0 & \text { if } & 4 t+2 \leq i \leq 8 t+1 \\
1 & \text { if } & \\
2 & \text { if } & 8 t+3 \leq i \leq 12 t+2
\end{array}\right.
$$

In this case
$v_{\Psi}(-1)=v_{\Psi}(1)=v_{\Psi}(0)=4 \mathrm{t}+1, e_{\Psi}(-2)=e_{\Psi}(2)=4 \mathrm{t}$ and $e_{\Psi}(-1)=e_{\Psi}(1)=1$.
Case 5: $n \equiv 4(\bmod 12)$
Take $\mathrm{n}=12 \mathrm{t}+4, \mathrm{t}>0$. Define $\Psi: \mathrm{V}(\mathrm{G}) \rightarrow\{0, \pm 1\}$ by

$$
\Psi\left(u_{i}\right)=\left\{\begin{array}{c}
-1 \text { if } 1 \leq i \leq 4 t+1 \\
0 \text { if } 4 t+2 \leq i \leq 8 t+3 \\
1 \text { if } 8 t+4 \leq i \leq 12 t+4
\end{array}\right.
$$

Then the edge function Ψ_{e} becomes

$$
\Psi_{e}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{cccc}
-2 & \text { if } & 1 \leq i \leq 4 t \\
-1 & \text { if } & i=4 t+1 \\
0 & \text { if } & 4 t+2 \leq i \leq 8 t+2 \\
1 & \text { if } & & i=8 t+3 \\
2 & \text { if } & 8 t+4 \leq i \leq 12 t+3
\end{array}\right.
$$

In this case
$v_{\Psi}(-1)=v_{\Psi}(1)=4 \mathrm{t}+1, v_{\Psi}(0)=4 \mathrm{t}+2, e_{\Psi}(-2)=e_{\Psi}(2)=4 \mathrm{t}$ and $e_{\Psi}(-1)=e_{\Psi}(1)=1$.
Case 6: $n \equiv 5(\bmod 12)$
Take $\mathrm{n}=12 \mathrm{t}+5, \mathrm{t} \geq 0$. Define a map $\Psi: \mathrm{V}(\mathrm{G}) \rightarrow\{0, \pm 1\}$ by

$$
\Psi\left(u_{i}\right)=\left\{\begin{array}{c}
-1 \text { if } 1 \leq i \leq 4 t+2 \\
0 \text { if } 4 t+3 \leq i \leq 8 t+3 \\
1 \text { if } 8 t+4 \leq i \leq 12 t+5
\end{array}\right.
$$

Then the edge function Ψ_{e} is given by

The Ciência \& Engenharia - Science \& Engineering Journal
ISSN: 0103-944X
Volume 11 Issue 1, 2023
pp: 854-862

$$
\Psi_{e}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{cr}
-2 & \text { if } 1 \leq i \leq 4 t+1 \\
-1 & \text { if } \\
0 & i=4 t+2 \\
0 & \text { if } 4 t+3 \leq i \leq 8 t+2 \\
1 & \text { if } \\
2 & \text { if } 8 t+4 \leq i \leq 12 t+4
\end{array}\right.
$$

Clearly $v_{\Psi}(-1)=v_{\Psi}(1)=4 \mathrm{t}+2, v_{\Psi}(0)=4 \mathrm{t}+1, e_{\Psi}(-2)=e_{\Psi}(2)=4 \mathrm{t}+1$ and
$e_{\Psi}(-1)=e_{\Psi}(1)=1$.
Case 7: $n \equiv 6(\bmod 12)$
Take $n=12 t+6, t \geq 0$. Define a map Ψ from $V(G)$ to the $\operatorname{set}\{0, \pm 1\}$ as follows

$$
\Psi\left(u_{i}\right)=\left\{\begin{array}{c}
-1 \text { if } 1 \leq i \leq 4 t+2 \\
0 \text { if } 4 t+3 \leq i \leq 8 t+4 \\
1 \text { if } 8 t+5 \leq i \leq 12 t+6
\end{array}\right.
$$

Then the function Ψ_{e} is given by.

$$
\Psi_{e}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ccr}
-2 & \text { if } & 1 \leq i \leq 4 t+1 \\
-1 & \text { if } & i=4 t+2 \\
0 & \text { if } & 4 t+3 \leq i \leq 8 t+3 \\
1 & \text { if } & i=8 t+4 \\
2 & \text { if } & 8 t+5 \leq i \leq 12 t+5
\end{array}\right.
$$

Here $v_{\Psi}(-1)=v_{\Psi}(1)=v_{\Psi}(0)=4 \mathrm{t}+2, e_{\Psi}(-2)=e_{\Psi}(2)=4 \mathrm{t}+1$ and $e_{\Psi}(-1)=e_{\Psi}(1)=1$.
Case 8: $n \equiv 7(\bmod 12)$
Let $\mathrm{n}=12 \mathrm{t}+7, t \geq 0$. We define a map Ψ from $\mathrm{V}(\mathrm{G})$ to $\{0, \pm 1\}$ by

$$
\Psi\left(u_{i}\right)=\left\{\begin{array}{c}
-1 \text { if } 1 \leq i \leq 4 t+2 \\
0 \text { if } 4 t+3 \leq i \leq 8 t+5 \\
1 \text { if } 8 t+6 \leq i \leq 12 t+7
\end{array}\right.
$$

Then the induced edge function $\Psi_{e}: E(G) \rightarrow\{0, \pm 1, \pm 2\}$ is given by

$$
\Psi_{e}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{rcr}
-2 & \text { if } & 1 \leq i \leq 4 t+1 \\
-1 & \text { if } & i=4 t+2 \\
0 & \text { if } & 4 t+3 \leq i \leq 8 t+4 \\
1 & \text { if } & i=8 t+5 \\
2 & \text { if } & 8 t+5 \leq i \leq 12 t+6
\end{array}\right.
$$

Then $v_{\Psi}(-1)=v_{\Psi}(1)=4 \mathrm{t}+2, v_{\Psi}(0)=4 \mathrm{t}+3, e_{\Psi}(-2)=e_{\Psi}(2)=4 \mathrm{t}+1$ and $e_{\Psi}(-1)=e_{\Psi}(1)=1$.
Case 9: $n \equiv 8(\bmod 12)$
Let $\mathrm{n}=12 \mathrm{t}+8, \mathrm{t} \geq q 0$. Define a function Ψ from $\mathrm{V}(\mathrm{G})$ to $\{0, \pm 1\}$ by

The Ciência \& Engenharia - Science \& Engineering Journal
ISSN: 0103-944X
Volume 11 Issue 1, 2023
pp: 854-862

$$
\Psi\left(u_{i}\right)=\left\{\begin{array}{c}
-1 \text { if } 1 \leq i \leq 4 t+3 \\
0 \text { if } 4 t+4 \leq i \leq 8 t+5 \\
1 \text { if } 8 t+6 \leq i \leq 12 t+8
\end{array}\right.
$$

Then the edge function Ψ_{e} is given by

$$
\Psi_{e}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{rcr}
-2 & \text { if } & \\
-1 & \text { if } & \\
0 & \text { if } & \\
1 \leq t+4 \leq i \leq 4 t+2 \\
1 & \text { if } & \\
2 & \text { if } & \\
\hline & & 8 t+6 \leq 8 t+4 \\
2 & & i \leq 12 t+7
\end{array}\right.
$$

$\operatorname{Then} v_{\Psi}(-1)=v_{\Psi}(1)=4 t+3, v_{\Psi}(0)=4 t+2, e_{\Psi}(-2)=e_{\Psi}(2)=4 t+2 \quad$ and $e_{\Psi}(-1)=e_{\Psi}(1)=1$.

Case 10: $n \equiv 9(\bmod 12)$
Let $\mathrm{n}=12 \mathrm{t}+9, \mathrm{t} \geq 0$. Define a map $\Psi: \mathrm{V}(\mathrm{G}) \rightarrow\{0, \pm 1\}$ as follows

$$
\Psi\left(u_{i}\right)=\left\{\begin{array}{l}
-1 \text { if } 1 \leq i \leq 4 t+3 \\
0 \text { if } 4 t+4 \leq i \leq 8 t+6 \\
1 \text { if } 8 t+7 \leq i \leq 12 t+9
\end{array}\right.
$$

Then the edge function Ψ_{e} is given by

$$
\Psi_{e}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{rrrr}
-2 & \text { if } & & 1 \leq i \leq 4 t+2 \\
-1 & \text { if } & & i=4 t+3 \\
0 & \text { if } & & 4 t+4 \leq i \leq 8 t+5 \\
1 & \text { if } & & i=8 t+6 \\
2 & \text { if } & & 8 t+7 \leq i \leq 12 t+8
\end{array}\right.
$$

Then $\quad v_{\Psi}(-1)=v_{\Psi}(1)=v_{\Psi}(0)=4 t+3, e_{\Psi}(-2)=e_{\Psi}(2)=4 t+2 \quad$ and $\quad e_{\Psi}(-1)=$ $e_{\Psi}(1)=1$.

Case 11: $n \equiv 10(\bmod 12)$
Let $\mathrm{n}=12 \mathrm{t}+10, \mathrm{t} \geq 0$. Define a function Ψ from $\mathrm{V}(\mathrm{G})$ to $\{0, \pm 1\}$ by

$$
\Psi\left(u_{i}\right)=\left\{\begin{array}{c}
-1 \text { if } 1 \leq i \leq 4 t+3 \\
0 \text { if } 4 t+4 \leq i \leq 8 t+7 \\
1 \text { if } 8 t+8 \leq i \leq 12 t+10
\end{array}\right.
$$

Then the induced edge map Ψ_{e} becomes

In this case $v_{\Psi}(-1)=v_{\Psi}(1)=4 t+3, v_{\Psi}(0)=4 t+4, e_{\Psi}(-2)=e_{\Psi}(2)=4 t+2$ and $e_{\Psi}(-1)=e_{\Psi}(1)=1$.

Case 12: $n \equiv 11(\bmod 12)$
Let $\mathrm{n}=12 \mathrm{t}+11, \mathrm{t} \geq 0$. Define $\Psi: \mathrm{V}(\mathrm{G}) \rightarrow\{0, \pm 1\}$ by

$$
\Psi\left(u_{i}\right)=\left\{\begin{array}{c}
-1 \text { if } 1 \leq i \leq 4 t+4 \\
0 \text { if } 4 t+5 \leq i \leq 8 t+7 \\
1 \text { if } 8 t+8 \leq i \leq 12 t+11
\end{array}\right.
$$

Then the induced edge map Ψ_{e} becomes

$$
\Psi_{e}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ccr}
-2 & \text { if } & 1 \leq i \leq 4 t+3 \\
-1 & \text { if } & i=4 t+4 \\
0 & \text { if } & 4 t+5 \leq i \leq 8 t+6 \\
1 & \text { if } & i=8 t+7 \\
2 & \text { if } & 8 t+8 \leq i \leq 12 t+10
\end{array}\right.
$$

Here $v_{\Psi}(-1)=v_{\Psi}(1)=4 t+3, v_{\Psi}(0)=4 t+3, e_{\Psi}(-2)=e_{\Psi}(2)=4 t+3$ and $e_{\Psi}(-1)=e_{\Psi}(1)=1$.

Corollary:3.1.1The cycle C_{n} is additive inverse cordial, if and only if, $\mathrm{n}>4$.
Proof:Since Ψ_{e} is a surjective function, we need atleast four edges so that all the four labels from the set $\{ \pm 1, \pm 2\}$ should be used to label the edges, so $n>3$. Consider the case $n=4$, suppose there exists an additive inverse cordial labeling Ψ. As Ψ_{e} is an onto function, -2 should be a label of any of the four edges of the cycle C_{n}. This label can be obtained only from two adjacent vertices with the label -1 . So we have left with two non labeled vertices. As -2 is one of the edge label 2 should be a label of any of the remaining non-labeled edges. It is possible only when the two non-labeled adjacent vertices should be labeled by 1 . If so, $v_{\Psi}(-1)=v_{\Psi}(1)=2, v_{\Psi}(0)=0$, a contradiction. Hence C_{4} is not an additive inverse cordial graph. For $\mathrm{n}>4$, the labeling given in theorem 3.1 satisfies the required conditions. Hence C is additive inverse cordial if $n>4$.

Theorem: $\mathbf{3 . 2} K_{1, n}$ is not additive inverse cordial.
Proof.Let u be the vertex of degree n in $K_{1, n}$. Suppose we assign 0 to u , then there doesn't exist an edge with the label 2 . If we assign 1 to u, then 2 cannot be an edge label. Suppose we

The Ciência \& Engenharia - Science \& Engineering Journal
ISSN: 0103-944X
Volume 11 Issue 1, 2023
pp: 854-862
choose -1 as label of \mathbf{u}, then there does not exist an edge with the label 2. In either case, Ψ_{e} is not onto and hence $K_{1, n}$ does not admit an additive inverse cordial labeling.

Theorem: $\mathbf{3 . 3} K_{n}$ is additive inverse cordial iff $\mathrm{n}>3$.
Proof.As the edge map is surjective, n should be greater than 3 . Conversely, suppose $n \geq 4$ then we define Ψ as follows:

Case 1: $n \equiv 0(\bmod 3)$
Let $\mathrm{n}=3 \mathrm{t}, \mathrm{t}>0$. Assign the label 0 to t vertices and then -1 to another t vertices and the remaining vertices are labeled by 1 . In this case, $v_{\Psi}(-1)=v_{\Psi}(1)=v_{\Psi}(0)=t, e_{\Psi}(-2)=$ $e_{\Psi}(2)=\binom{t}{2}$ and $e_{\Psi}(-1)=e_{\Psi}(1)=t^{2}$.

Case 2: $n \equiv 1(\bmod 3)$
Let $\mathrm{n}=3 \mathrm{t}+1, \mathrm{t}>0$. Assign the label -1 to first t vertices then assign 1 to next t vertices. Finally we assign the label 0 to $t+1$ vertices. Here $v_{\Psi}(-1)=v_{\Psi}(1)=t, v_{\Psi}(0)=t+1, e_{\Psi}(-2)=$ $e_{\Psi}(2)=\binom{t}{2}$ and $e_{\Psi}(-1)=e_{\Psi}(1)=(t+1) t$.

Case 3: $n \equiv 2(\bmod 3)$
Let $\mathrm{n}=3 \mathrm{t}+2, \mathrm{t}>0$. Assign the label -1 to first $\mathrm{t}+1$ vertices and assign the label 1 to next $\mathrm{t}+1$ vertices. Finally we assign the label 0 to t vertices. Note that $v_{\Psi}(-1)=v_{\Psi}(1)=t+$ $1, v_{\Psi}(0)=t, e_{\Psi}(-2)=e_{\Psi}(2)=\binom{t+1}{2}$

$$
\text { and } e_{\Psi}(-1)=e_{\Psi}(1)=(t+1) t
$$

Hence K_{n} is additive inverse cordial for all $\mathrm{n} \geq 4$.
Example 3.1A complete graph K_{9} with an additive inverse cordial labeling is given below.

Figure. 2

The Ciência \& Engenharia - Science \& Engineering Journal
ISSN: 0103-944X
Volume 11 Issue 1, 2023
pp: 854-862
References

1. I.Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, ArsCombinatoria, 23(1987), 201-207.
2. J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2017) \#Ds6.
3. H F.Harary, Graph theory, Addisionwesley, New Delhi (1969).
4. A.Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967) 349355.
